Article contents
Local Elastic Constants For Epoxy-Nanotube Composites From Molecular Dynamics Simulation
Published online by Cambridge University Press: 01 February 2011
Abstract
A method from molecular dynamics simulation is developed for determining local elastic constants of an epoxy/nanotube composite. The local values of C11, C33, K12, and K13 elastic constants are calculated for an epoxy/nanotube composite as a function of radial distance from the nanotube. While the results possess a significant amount of statistical uncertainty resulting from both the numerical analysis and the molecular fluctuations during the simulation, the following observations can be made. If the size of the region around the nanotube is increased from shells of 1Å to 6Å in thickness, then the scatter in the data reduces enough to observe trends. All the elastic constants determined are at a minimum 20Å from the center of the nanotube. The C11, C33, and K12 follow similar trends as a function of radial distance from the nanotube. The K13 decreases greater distances from the nanotube and becomes negative which may be a symptom of the statistical averaging.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2008
References
REFERENCES
- 2
- Cited by