Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T11:46:36.018Z Has data issue: false hasContentIssue false

Local Bonding Structure of Hydrogen in Crystalline Silicon: NMR and Tem Studies

Published online by Cambridge University Press:  03 September 2012

J. B. Boyce
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
N. M. Johnson
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
S. E. Ready
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
J. Walker
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
G. B. Anderson
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
Get access

Abstract

Nuclear magnetic resonance (NMR) and transmission electron microscopy have been used to obtain information on the local structure of deuterium in single-crystal silicon, both for deuterated, phosphorous-doped Si that contains platelet-structured defects and for deuterated boron-doped silicon. In both cases, the NMR spectrum consists of two components, a narrow doublet and a central, unsplit line. The doublet arises from D bonded to Si with the Si-D bond along the <111> directions. The central line, which contains more D than does the doublet, is ascribed primarily to molecular D2 that resides in regions of the crystal where translation and tumbling are inhibited and possibly to some D in weak Si-D bonds.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For a review, see Hydrogen in Semiconductors (Academic Press, New York, 1991), eds. Pankove, J. I. and Johnson, N. M..Google Scholar
2. Johnson, N. M., Ponce, F. A., Street, R. A., and Nemanich, R. J., Phys. Rev. B 35, 4166 (1987).Google Scholar
3. Johnson, N. M., Doland, C., Ponce, F. A., Walker, J., and Anderson, G., Physica B 170, 3 (1991).Google Scholar
4. Heyman, J. N., Ager, J. W. III, Halier, E. E., Johnson, N. M., Walker, J., and Doland, C. M., Phys. Rev. B, in press.Google Scholar
5. Johnson, N. M., Herring, C., Doland, C., Walker, J., Anderson, G., and Ponce, F. A., Materials Science Forum 83–87, 33 (1992).CrossRefGoogle Scholar
6. Davis, J. H., Jeffrey, K. R., Bloom, M., Valic, M. I., and Higgs, T. P., Chem. Phys. Lett. 42, 390 (1976);CrossRefGoogle Scholar
Boden, N., Hanlon, S. M., Levine, Y. K., and Mortimer, M., Chem. Phys. Lett. 57, 151 (1978).CrossRefGoogle Scholar
7. Boyce, J. B., Johnson, N. M., Ready, S. E., and Walker, J., unpublished (1992).Google Scholar
8. Zhang, S. B. and Jackson, W. B., Phys. Rev. B 43, 12142 (1991).Google Scholar
9. Leopold, D. J., Boyce, J. B., Fedders, P. A., and Norberg, R. E., Phys. Rev. B 26, 6053 (1982).Google Scholar
10. Bork, V. P., Fedders, P. A., Leopold, D. J., Norberg, R. E., Boyce, J. B., and Knights, J. C, Phys. Rev. B 36, 9351 (1987).Google Scholar
11. Volz, M. P., Santos-Filho, P., Conradi, M. S., Fedders, P. A., Norberg, R. E., Turner, W., and Paul, W., Phys. Rev. Lett. 63, 2582 (1989).Google Scholar
12. Santos-Filho, P., Volz, M. P., Corey, R. L, Kim, Y. W., Fedders, P. A., Norberg, R. E., Turner, W., and Paul, W., J. Non-Cryst. Sol. 114, 235 (1989).Google Scholar
13. Van de Walle, C. G., Denteneer, P. J. H., Bar-Yam, Y., and Pantelides, S. T., Phys. Rev. B 39, 10791 (1989).CrossRefGoogle Scholar