Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T17:27:10.471Z Has data issue: false hasContentIssue false

Lithium Insertion Compounds

Published online by Cambridge University Press:  21 February 2011

J.B. Goodenough
Affiliation:
Center for Materials Science & Engineering, ETC 5.160University of Texas at Austin, Austin, TX 78712-1084
A. Manthiram
Affiliation:
Center for Materials Science & Engineering, ETC 5.160University of Texas at Austin, Austin, TX 78712-1084
A.C.W.P. James
Affiliation:
Center for Materials Science & Engineering, ETC 5.160University of Texas at Austin, Austin, TX 78712-1084
P. Strobel
Affiliation:
CNRS, Laboratoire de Crystallographie 166X-38042 GRENOBLE Cedex (France)
Get access

Abstract

The topotactic insertion/extraction of lithium in layered oxides and sulfides is compared with that in the oxo- and thiospinel frameworks [M2]X4 for both the technical interest of tailoring secondary-battery cathode materials and the scientific interest of exploring narrow-band phenomena and magnetic interactions in compounds and/or phases not accessible by conventional high-temperature techniques. It is pointed out that in layered LiyCoO 2 the higher voltages accessible in oxides is compatible with the higher Li+ -ion mobilities needed in power cells, but that fast three-dimensional Li+ -ion conduction in oxides requires a framework structure such as the monoclinic/orthorhombic Fe2(MO4)3 structure stabilized by M = Mo, W, and S. The influence of the counter cation on the working redox potential is illustrated by a 0.6 eV shift in the Fe3+/2+ redox couple on going from M = Mo or W to M = S.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Goodenough, J.B., Thackeray, M. M., David, W.I.F., and Bruce, P.G., Rev. Chim. minérale 21, 435 (1984).Google Scholar
2. Lotgering, F.K. and Stapele, R.P. Van, J. Appl. Phys. 39, 417 (1968).Google Scholar
3. Schöllhorn, R., 9th Int. Conf. Solid Compounds of Transition Elements, Univ. of Oxford, 4-8 July 1988 (unpublished).Google Scholar
4. Mora, P. de la and Goodenough, J.B., J. Solid State Chem. 70, 121 (1987).Google Scholar
5. Jacobson, A.J. and McCandlish, L.E., J. Solid State Chem. 29, 355 (1979).Google Scholar
6. Whittingham, M.S., Prog. Solid State Chem. 12, 41 (1978).Google Scholar
7. Goodenough, J.B., Proc. Symp. on “Manganese Dioxide Electrode: Theory and Practice for Electrochem. Applications.Schumm, B. Jr., Grothier, M., Middaugh, R. L., and Hunter, J.C., eds. (The Electrochemical Society, 1985) Vol. 85–4, p. 77.Google Scholar
8. Hulliger, F., in “Structural Chemistry of Layer Type Phases,” Levy, F., ed., (Reidel Publ., Dordrecht, Netherlands, 1976) p. 1.Google Scholar
9. Whittingham, M.S., Science 192, 1126 (1976).Google Scholar
10. Rouxel, J., in “Physics and Chemistry of Compounds with Layered Structures,” Levy, F., ed. (Reidel Publ., Dordrecht, Netherlands, 1979) Vol. 6, p. 201.Google Scholar
11. Shannon, R.D., Rogers, D.B., and Prewitt, C.T., Inorg. Chem. 10, 713 (1971).Google Scholar
12. Mizushima, K., Jones, P.C., Wiseman, P.J., and Goodenough, J.B., Mat. Res. Bull. 17, 785 (1980).Google Scholar
13. Thomas, M.G.S.R., Bruce, P.G., and Goodenough, J.B., J. Electrochem. Soc. 132, 1521 (1985). 413Google Scholar
14. Thomas, M.G.S.R., Bruce, P.G., and Goodenough, J.B., Solid State Ionics 17, 13 (1985).Google Scholar
15. James, A.C.W.P. and Goodenough, J.B., J. Solid State Chem. 76, 87 (1988).Google Scholar
16. James, A.C.W.P. and Goodenough, J.B., J. Solid State Chem. 74, 287 (1988).CrossRefGoogle Scholar
17. Lang, G., Z. anorg. algem. Chem. 348, 246 (1966).Google Scholar
18. Goodenough, J.B. in “Proc. Climax Fourth Int. Conf. on the Chemistry and Uses of Molybldenum,” Barry, H.F. and Mitchell, P.C.M., eds. (Chimax Molybdenum Co., Ann Arbor, Michigan, 1982) p. 1.Google Scholar
19. Thomas, M.G.S.R., David, W.I.F., Goodenough, J.B., and Groves, P., Mat. Res. Bull. 20, 1137 (1985).Google Scholar
20. dePicciotto, L.A. and Thackeray, M.M., Mat. Res. Bull. 20, 187 (1985).CrossRefGoogle Scholar
21. Manthiram, A. and Goodenough, J.B., Can. J. Phys. 65, 1309 (1987).CrossRefGoogle Scholar
22. Rogers, D.B., Goodenough, J.B., and Wold, A., J. Appl. Phys. 35, 1069 (1964).Google Scholar
23. Rogers, D.B., Gillson, J.L., and Gier, I.E., Solid State Commun. 5, 263 (1967).CrossRefGoogle Scholar
24. Bongers, P.F., Ph.D. dissertation. Univ. of Leiden, Leiden, The Netherlands, 1957.Google Scholar
25. Goodenough, J.B., “Magnetism and the Chemical Bond,” (Interscience and John Wiley, New York, NY, 1963) p. 269.Google Scholar
26. Hewston, T.A. and Chamberland, B. L., J. Solid State Chem. 59, 168 (1985); 65, 100 (1986).Google Scholar
27. Cardoso, L.P., Cox, D.E., Hewston, T.A., and Chamberland, B.L., J. Solid State Chem. 72, 234 (1988).CrossRefGoogle Scholar
28. Thackeray, M.M., David, W.I.F., and Goodenough, J.B., Mat. Res. Bull. 17, 785 (1982).Google Scholar
29. Thackeray, M.M., David, W.I.F., and Goodenough, J.B., J. Solid State Chem. 55, 280 (1984).Google Scholar
30. Thackeray, M.M., David, W.I.F., Bruce, P.G., and Goodenough, J.B., Mat. Res. Bull. 18, 461 (1983).Google Scholar
31. David, W.I.F., Goodenough, J.B., Thackeray, M.M., and Thomas, M.G.S.R.. Rev. Chim. mindrale 20, 636 (1983).Google Scholar
32. Hunter, J.C., J. Solid State Chem. 39, 142 (1981).CrossRefGoogle Scholar
33. Thackeray, M.M., Johnson, P. J., dePicciotto, L.A., Bruce, P.G., and Goodenough, J.B., Mat. Res. Bull. 19, 179 (1984).Google Scholar
34. Menyuk, N., Dwight, K., and Arnott, R.J., J. Appl. Phys. 37, 1387 (1966).Google Scholar
35. Murphy, D.W., Greenblatt, M., Zahurak, S.M., Cava, R.J., Wasczak, J.V., Hull, G.W. Jr, and Hutton, R.S., Rev. Chim. mindrale 19, 441 (1982).Google Scholar
36. Chamberland, B.L. and Hewston, T.A., Solid State Commun. 58, 693 (1986).CrossRefGoogle Scholar
37. Kessler, H. and Sienko, M.J., J. Chem. Phys. 55, 5414 (1971).Google Scholar
38. Goodenough, J.B., Prog. Solid State Chem. 5, 145 (1972).Google Scholar
39. Goodenough, J.B., J. Phys. Chem. Solids 30, 261 (1969).Google Scholar
40. Schöllhorn, R. and Payer, A., Angew. Chem. Int. Ed. Engl. 24, 67 (1985).Google Scholar
41. Sinha, S. and Murphy, D.W., Solid State Ionics 20, 81 (1986).Google Scholar
42. James, A.C.W.P. and Goodenough, J.B., Solid State, Ionics 27, 37 (1988).Google Scholar
43. James, A.C.W.P., Goodenough, J.B., Clayden, N.J., and Banks, P.M., Mat. Res. Bull. (in press).Google Scholar
44. James, A.C.W.P., Ellis, B., and Goodenough, J.B., Solid State Ionics 27, 45 (1988).Google Scholar
45. Goodenough, J.B., Hong, H. Y-P, and Kafalas, J.A., Mat. Res. Bull. 11, 203 (1976).Google Scholar
46. Manthiram, A. and Goodenough, J.B., Proc. 4th Int. Meeting on Lithium Batteries, Vancouver, Canada, May 24-27 (1988).Google Scholar
47. Nadiri, A., Delmas, C., Salmon, R., and Hagenmuller, P., Rev. Chim. mindrale 21, 537 (1984).Google Scholar
48. Reiff, W.M. Zhang, J.H., and Torardi, C.C., J. Solid State Chem. 62, 231 (1986).Google Scholar
49. Manthiram, A. and Goodenough, J.B., J. Solid State Chem. 71, 349 (1987).Google Scholar