Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T07:43:14.598Z Has data issue: false hasContentIssue false

Lithium Electrochemical Investigations of Crystalline Layered Compounds

Published online by Cambridge University Press:  21 February 2011

C. Julien
Affiliation:
Laboratoire de Physique des Solides de l'Université P.et M.Curie associd au CNRS, UA154. 4, place Jussieu 75252 Paris Cedex 05, France
I. Samaras
Affiliation:
Laboratoire de Physique des Solides de l'Université P.et M.Curie associd au CNRS, UA154. 4, place Jussieu 75252 Paris Cedex 05, France
S.I. Saikh
Affiliation:
Laboratoire de Physique des Solides de l'Université P.et M.Curie associd au CNRS, UA154. 4, place Jussieu 75252 Paris Cedex 05, France
M. Balkanski
Affiliation:
Laboratoire de Physique des Solides de l'Université P.et M.Curie associd au CNRS, UA154. 4, place Jussieu 75252 Paris Cedex 05, France
Get access

Abstract

Electrochemical investigations on lithium insertion in crystalline layered chalcogenide compounds are presented. Systematic and precise studies of the voltage-composition relation were made in single crystals of InSe, In2Se3, MoS2, TiS2 and NiPS3. The stability of the intercalated phases is discussed on bases of electrochemical potential spectroscopy measurements and inverse derivative composition voltage is analysed using the lattice gas model. The chemical diffusion coefficient D and the Darken factor Kt are deduced from the galvanostatic discharge curves of the lithium-solid solution electrode cells. All parameters have been measured as a function of lithium composition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Whittingham, MS., Prog.Sol.St.Chem. 12, 41 (1978).Google Scholar
2. Abraham, K.M., J.Power Sources 7, 1 (1981-1982).Google Scholar
3. Brec, R., Solid State Ionics 22, 3 (1986).Google Scholar
4. Johnson, W.B. and Worrell, W.L., Synthetic Metals 4, 225 (1982).Google Scholar
5. Dahn, D.C. and Haering, R.R., Dolid State Commun. 44, 29 (1982).Google Scholar
6. Julien, C. and Samaras, I., Solid State Ionics 22, 101 (1988).CrossRefGoogle Scholar
7. Fotsing, J., julien, C., Balkanski, M. and Kambas, K., Mat.Res.Engineer. B2, (1988) in press.Google Scholar
8. Basu, S. and Worrell, W.L., in Fast Ion Transport in Solids, eds.Vashishta, P., Mundy, J.N. and Shenoy, G.K. (North-Holland, Amsterdam, 1979) p.149.Google Scholar
9. Honders, A., Kinderen, J.M.der, Heeren, A.H.van, Wit, J.H.W.de and Broers, G.H.J., Solid State Ionics 15, 265 (1985).Google Scholar
10. Stoemenos, I., EEC Sci.Report, 1988.Google Scholar
11. Thompson, A.H., J.Electrochem.Soc. 126, 608 (1979).Google Scholar
12. Berlinsky, A.J., Unruh, W.G., McKinnon, W.R. and Haering, R.R., Solid State Commun. 31, 135 (1979).Google Scholar
13. Py, M.A. and Haering, R.R., Can.J.Phys. 61, 76 (1983).Google Scholar
14. Méauté, A.Le, Acad, C.R..Sci.(Paris) 267C, 309 (1978).Google Scholar
15. Foot, P.J.S. and Nevett, B.A., Solid State Ionics 8, 169 (1983).Google Scholar
16. Brec, R., Solid State Ionics 22, 3 (1986).Google Scholar