Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T09:49:29.218Z Has data issue: false hasContentIssue false

Liquidus Temperature and Primary Crystallization Phases in High-Zirconia High-Level Waste Borosilicate Glasses

Published online by Cambridge University Press:  10 February 2011

Trevor Plaisted
Affiliation:
Pacific Northwest National Laboratory, Box 999, Richland, WA 99352
Pavel Hrma
Affiliation:
Pacific Northwest National Laboratory, Box 999, Richland, WA 99352
John Vienna
Affiliation:
Pacific Northwest National Laboratory, Box 999, Richland, WA 99352
Antonin Jiricka
Affiliation:
Pacific Northwest National Laboratory, Box 999, Richland, WA 99352
Get access

Abstract

Liquidus temperature (TL) studies of high-Zr high-level waste (HLW) borosilicate glasses have identified three primary phases: baddelyite (ZrO2), zircon (ZrSiO4), and alkali-zirconium silicates, such as parakeldyshite (Na2ZrSi2O7). Using published TL data for HLW glasses with these primary phases, we have computed partial specific TLS for major glass components. On the Na2O-SiO2-ZrO2 submixture, we have determined approximate positions of the boundaries between the baddelyite, zircon, and parakeldyshite primary phase fields. The maximum that can dissolve at 1150‘C in a borosilicate HLW glass subjected to common processability and acceptability constraints appears to be 16.5 mass% ZrO2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Hrma, P., Piepel, G. F., Schweiger, M. J., Smith, D. E., Kim, D.-S., Redgate, P. E., Vienna, J. D., LoPresti, C. A., Simpson, D. B., Peeler, D. K., and Langowski, M. H., Property/Composition Relationships for Hanford High-Level Waste Glasses Melting at 1150°C, PNL-10359, Pacific Northwest Laboratory, Richland, Washington (1994).Google Scholar
2 Kim, D-S. and Hrma, P., Ceram. Trans. 45, 327337 (1994).Google Scholar
3 Crum, J. V., Schweiger, M. J., Hrma, P., Vienna, J. D.. Mat. Res. Soc. Symp. Proc. 465, 7985 (1997).Google Scholar
4 Rao, Q., Piepel, G. F., Hrma, P., and Crum, J. V.. J. Non-Cryst. Solids 220, 1729 (1997).Google Scholar
5 Crum, J. V., Hrma, P., Schweiger, M. J., and Piepel, G. F., Ceram. Trans. 87, 271277 (1998).Google Scholar
6 Peeler, D. K., Reamer, I. A., Vienna, J. D., and Crum, J. V., Preliminary Glass Formulation Report for INEEL HAW, Savannah River Technology Center, Aiken, SC (1998).Google Scholar
7 Staples, B. A., Peeler, D. K., Vienna, J. D. Scholes, B. A., and Musick, C. A., The Preparation and Characterization of INTEC HAW, INEEL/EXT-98-00971, Lockheed Martin Idaho Technologies Co, Idaho Falls, Idaho (1999).Google Scholar
8 Vienna, J. D., Peeler, D. K., Plaisted, T. J., Plaisted, R. L., Reamer, I. A., and Crum, J. V.. Ceram. Trans. 107, in press.Google Scholar
9 Piepel, G. F., Redgate, P. E., and Hrma, P.. Ceram. Trans. 61, 489496 (1995).Google Scholar
10 Peeler, D. K. and Hrma, P.. Ceram. Trans. 45, 219229 (1994).Google Scholar
11 Li, H., Vienna, J. D., Hrma, P., Smith, D. E., and Schweiger, M. J.. Mat. Res. Soc. Proc. 465, 261268, (1997).Google Scholar