Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-27T02:55:10.741Z Has data issue: false hasContentIssue false

Liquid-phase Epitaxial Growth of BiFeO3 Thick Films using an Infrared Irradiation

Published online by Cambridge University Press:  01 February 2011

Takeshi Kawae
Affiliation:
[email protected], Kanazawa University, Graduate School of Science and Technology, Kakuma-machi, Kanazawa, 920-1192, Japan
Mitsuhiro Shiomoto
Affiliation:
[email protected], Kanazawa University, Kanazawa, 920-1192, Japan
Hisashi Tsuda
Affiliation:
[email protected], Kanazawa University, Kanazawa, 920-1192, Japan
Satoru Yamada
Affiliation:
[email protected], Ishikawa National College of Technology, Kahoku-gun, 920-0392, Japan
Masanori Nagao
Affiliation:
[email protected], National Institute for Material Science, Tsukuba, 305-0047, Japan
Akiharu Morimoto
Affiliation:
[email protected], Kanazawa University, Kanazawa, 920-1192, Japan
Minoru Kumeda
Affiliation:
[email protected], Kanazawa University, Kanazawa, 920-1192, Japan
Get access

Abstract

Epitaxial BiFeO3 (BFO) thick films were fabricated on SrTiO3 (STO) substrates by a simple liquid-phase epitaxy (LPE) growth technique. To avoid the evaporation of Bi, in this process, we used the lid substrate. As starting materials, we used calcined powder or amorphous films deposited by pulsed laser ablation. The fabricated films were found to have a single perovskite phase and be (100)-oriented. Cube-on-cube epitaxial growth of film on the STO substrate was also confirmed by ϕ-scan measurements. The films grown on the substrate display a multigrain structure with a maximum in-plane size of approximately 100μm, and the film thickness was about 3-35 μm. The interface structure between the film and the substrate was relatively smooth. These results indicate that the proposed simple LPE technique is highly suitable for the fabrication of BFO thick films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wang, J., Neaton, J. B., Zheng, H., Nagarajan, V., Ogale, S. B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D. G., Waghmare, U. V., Spaldin, N. A., Rabe, K. M., Wuttig, M., and Ramesh, R.: Science. 299 (2003) 1719.Google Scholar
2. Wang, J., Zheng, H., Ma, Z., Prasertchoug, S., Wuttig, M., Droopad, R., Yu, J., Eisenbeiser, K., and Ramesh, R.: Appl. Phys. Lett. 85 (2004) 2574.Google Scholar
3. Yun, K. Y., Noda, M., Okuyama, M., Saeki, H., Tabata, H., and Saito, K.: J. Appl. Phys. 96 (2004) 3399.Google Scholar
4. Singh, S. K. and Ishiwara, H.: Jpn. J. Appl. Phys. 44 (2005) L734.Google Scholar
5. Gonzalez, A. H., Simoes, A. Z., Cavalcante, L. S., Longo, E., Varela, J. A., and Riccardi, C. S.: Appl. Phys. Lett. 90 (2007) 052906.Google Scholar
6. Lebeugle, D., Colson, D., Forget, A. and Viret, M.: Appl. Phys. Lett. 91 (2007) 022907.Google Scholar
7. Qi, X., Dho, J., Blamire, M. G., Jia, Q., Lee, J. S., Foltyn, S. and MacManus-Driscoll, J. L.: J. Magn. Magn. Mater. 283 (2004) 415.Google Scholar
8. Wang, Y. P., Zhou, L., Zhang, M. F., Chen, X. Y., Liu, J.-M., and Liu, Z. G.: Appl. Phys. Lett. 84 (2004) 1731.Google Scholar
9. Pradhan, A. K., Zhang, K., Hunter, D., Dadson, J. B., Loutus, G. B., Bhattachrya, P., Katiyar, R., Zhang, J., Sellmyer, D. J., Roy, U. N., Cui, Y., and Burger, A.: J. Appl. Phys. 97 (2005) 093903.Google Scholar
10. Koizumi, H., Nishizeki, N., and Ikeda, T.: Jpn. J. Appl. Phys. 3 (1964) 495.Google Scholar