Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-17T19:07:29.049Z Has data issue: false hasContentIssue false

Liquid Structures of Metallic Glass-forming Binary Zr Alloys

Published online by Cambridge University Press:  01 February 2011

Akitoshi Mizuno
Affiliation:
[email protected], United States
Toshihiko Akimoto
Affiliation:
[email protected], Gakushuin University, physics, Tokyo, Japan
Masahito Watanabe
Affiliation:
[email protected], Gakushuin University, Department of Physics, Tokyo, Japan
Shinji Kohara
Affiliation:
[email protected], JASRI/SPring-8, Hyogo, Japan
Masaki Takata
Affiliation:
[email protected], SPring-8/RIKEN, Hyogo, Japan
Get access

Abstract

We have analyzed liquid structures of the binary Zr-TM (TM=Pd, Cu, Ni) alloys as a function of composition to investigate relations with their glass-forming abilities. High-energy x-ray (E=113 keV) diffraction experiments were performed and a conical nozzle levitation (CNL) technique was applied to achieve a containerless condition for highly reactive melts with high temperature. Structure information of the liquid alloys has been obtained with the aid of reverse Monte Carlo simulation. A shoulder was found at high-Q side of the second peak for the structure factor for Zr70Pd30 as well as the Zr70Cu30 alloy and the Zr50Cu50 alloys, which can be indication of the formation of ISRO in the liquid alloys. Liquid Zr-Ni alloys shows an apparent difference in the structure factors between the Zr70Ni30 and the Zr50Ni50 alloys, which can be associated with the formation of the chemical short range ordering, whereas the Zr-Pd alloys show a typical random distribution of atoms.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Inoue, A. and Takeuchi, A.: Mater. Trans. 43 (2002) 1892.Google Scholar
2. Xia, L., Ding, D., Shan, S. T. and Dong, Y D: J. Phys. Condens. Matter 18 (2006) 3543.Google Scholar
3. Wang, D., Li, Y., Sun, B. B., Sui, M. L., Lu, K. and Ma, E.: Appl. Phys. Lett. 84 (2004) 4029.Google Scholar
4. Frank, F.C.: Proc. R. Soc. London A 215 (1952) 43.Google Scholar
5. Kelton, K.F., Lee, G.W., Gangopadhyay, A.K., Hyers, R.W., Rathz, T.J., Rogers, J.R., Robinson, M.B. and Robinson, D.S.: Phys. Rev. Lett. 90 (2003) 195504.Google Scholar
6. Shenck, T., Holland-Moritz, D., Simonet, V., Bellissent, R. and Herlach, D. M.: Phys. Rev. Lett. 89 (2002) 075507.Google Scholar
7. Mizuno, A., Matsumura, S., Watanabe, M., Kohara, S. and Takata, M.: Mater. Trans. 46 (2005) 2799.Google Scholar
8. Mizuno, A., Kaneko, T., Matsumura, S., Watanabe, M., Kohara, S. and Takata, M.: Mat. Sci. Forum 561–565 (2007) 2012.Google Scholar
9. Saida, J., Matsushita, M. and Inoue, A.: Appl. Phys. Lett. 79 (2001) 412.Google Scholar
10. Saida, J., Kasai, M., Matsubara, E. and Inoue, A.: Ann. Chim. Sci. Mat. 27 (2002), 77.Google Scholar
11. Fukunaga, T., Itoh, K., Otomo, T., Mori, K., Sugiyama, M., Kato, H., Hasegawa, M., Hirata, A., Hirotsu, Y., Hannon, A.C., Intermetallics 14 (2006) 893.Google Scholar
12. Mattern, N., Eckert, J., Kuhn, U., Hermann, H., Sakowski, J., Herms, G., Neuefeind, J.: Appl. Phys. Lett. 80 (2002) 4525.Google Scholar
13. Kohara, S., Suzuya, K., Kashihara, Y., Matsumoto, N., Umesaki, N. and Sakai, I.: Nucl. Instr. Meth. A 467–468 (2001) 1030.Google Scholar
14. Faber, T. E. and Ziman, J. M.: Phil. Mag. 11 (1965) 153.Google Scholar
15. McGreevy, R.L. and Pusztai, L., Mol. Simul. 1 (1988) 359.Google Scholar
16. Waseda, Y.: The Structure of Non-Crystaline Materials, (McGraw-Hill, New York, 1980).Google Scholar
17. Wang, D., Li, Y., Sun, B. B., Sui, M. L., Lu, K. and Ma, E.: Appl. Phys. Lett. 80 (2002) 4029 Google Scholar
18. Oelhafen, P., Hauser, E., Güntherodt, H. -J., Bennemann, K. H.: Phys. Rev. Lett. 43 (1979) 1134.Google Scholar