Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-09T07:01:43.378Z Has data issue: false hasContentIssue false

Liquid Phase Epitaxy of Hg1−xCdxTe from Te Solutions: A Route to IR Detector Structures

Published online by Cambridge University Press:  25 February 2011

E. R. Gertner*
Affiliation:
Rockwell International Science Center, 1049 Camino Dos Rios, P.O. Box 1085, Thousand Oaks, CA 91360
Get access

Extract

The intrinsic semiconductor mercury cadmium telluride (Hg1−xCdxTe), a solid solution of HgTe and CdTe, has assumed an ever increasing role in the fabrication of infrared (IR) detectors because its energy gap (0-1.5 eV) can be tailored to match the specific needs of IR detection and fiber optic systems. In photovoltaic focal plane array (FPA) applications, low power consumption, as well as excellent sensitivity at elevated temperatures, have made Hg1−xCdxTe the material of choice for both the midwave IR (MWIR) and longwave IR (LWIR) region.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fong, M.F.S. and Stenson, D.A., 1986 U.S. Workshop on the Physics and Chemistry of HgCdTe, to be published, J. Vac. Sci. Tech.Google Scholar
[2] Dornhaus, R. and Nimtz, G., Springer Tracts in Modern Physics 98, 119309 (1983).CrossRefGoogle Scholar
[3] Willardson, R.K. and Beer, A.C., Mercury Cadmium Telluride 18, 1384 (1981).Google Scholar
[4] Gertner, E.R., Ann. Rev. Mater. Sci. 15, 303–28 (1985).Google Scholar
[5] Herman, M.A. and Pessa, M., J. Appl. Phys. 57, 2071 (1985).Google Scholar
[6] Tennant, W.E., Tech. Digest, 1983 Intern. Electronic Device Meeting (IEEE, New York, 1983), p. 704.Google Scholar
[7] Rode, J.P., Proc. SPIE (Intern. Soc. Opt. Eng) 443, 120 (1983).Google Scholar
[8] Riedel, R.A., Gertner, E.R., Edwall, D.D. and Tennant, W.E., Appl. Phys. Lett. 46, 64 (1984).Google Scholar
[9] Gertner, E.R., Tennant, W. E, Blackwell, J.D. and Rode, V.P., J. Crystl. Gr. 72, 462 (1985).CrossRefGoogle Scholar
[10] Bell, S.L. and Sen, S., J. Vac. Sci. Technol.A3, 112 (1985).Google Scholar
[11] Wood, R.A., Schmit, J.L., Chung, H.K., Magee, T.J. and Woolhouse, G.R., J. Vac. Sci. Technol.A3, 93 (1985).Google Scholar
[12] Woolhouse, G.R., Magee, T.J., Kawajoshi, H.A., Leung, C.M. S. and Ormond, R.D., J. Vac. Sci. Technol. A3, 83 (1985).Google Scholar
[13] Yoshikawa, M., Maruyama, J., Shito, T., Maekawa, T. and Takigawa, T., 1986 U.S. Workshop on the Physics and Chemistry of HgCdTe, to be published, J. Vac. Sci. Tech.Google Scholar
[14] James, T.W. and Stoller, R.E., Appl. Phys. Lett. 44, 56 (1984).Google Scholar
[15] Wood, S., Greggi, J. Jr., and Takei, W.J., Appl. Phys. Lett. 46, 371 (1985).Google Scholar
[16] Schwartz, J.P., Tung, T. and Brebrick, R.F., J. Electrochem. Soc. 128, 439 (1981).Google Scholar
[17] Tung, T., Golonka, L. and Brebrick, R.F., J. Electrochem. Soc. 128, 451 (1981).Google Scholar
[18] Harman, T.C., Electron. Mater. 8, 191 (1980).Google Scholar
[19] Tung, T., Golonka, L. and Brebrick, R.F., J. Electrochem. Soc. 128, 1601 (1981).Google Scholar
[20] Bowers, J.E., Schmit, J.L., Speerschneider, C.J., and Maciolek, R., IEEE Trans. Elect. Devices ED-27, 24 (1980).CrossRefGoogle Scholar
[21] Amingual, D., DeStefanis, G.L., Guillot, S., Ouvrier-Buffet, J.L. and Paltrier, S., to be published, Proceedings of SPIE, Innsbruck(1986).Google Scholar
[22] Nicolas, P., Chamomal, J.P., Cluzel, J., Ravetto, M. and Rigaux, G., SPIE 686, 26 (1986).Google Scholar
[23] Vydyanath, H.R., Hampton, S.R., Ward, P.B., Fishman, L., Slawinski, J. and Krueger, T., presented at the Detector Specialty Meeting of IRIS, Sunnyvale, CA (1986).Google Scholar
[24] Morczkowski, J.A. and Vydyanath, H.R., J. Electrochem. Soc. 128, 655 (1981).Google Scholar
[25] Harman, T.C., J. Electron. Mater. 8, 191 (1979).Google Scholar
[26] Harman, T.C., J. Electron. Mater. 10, 1069 (1981).CrossRefGoogle Scholar
[27] Schmit, J.L. and Bowers, J.E., Appl. Physl. Lett 35, 457 (1979).Google Scholar
[28] Schmit, J.L., Hager, R.J. and Wood, R.A., J. Cryst. Growth 56, 485 (1982).Google Scholar
[29] Wood, R.A. and Hager, R.J., J. Vac. Sci. Technol. A1,1608 (1983).CrossRefGoogle Scholar
[30] Nemirovsky, Y., Margarlit, S., Finkman, E., Shacham-Diamond, Y. and Kidron, I., J. Electron. Mater. 11, 133 (1982).CrossRefGoogle Scholar
[31] Nakahama, K, Ohkator, R., Nishitani, K. and Murotani, T., J. Electron. Mater. 13, 67 (1984).CrossRefGoogle Scholar
[32] Wang, C.C., Shin, S.H., Chu, M., Lanir, M. and Vanderwyck, A.H.B., J. Electrochem. Soc. 127, 175 (1980).Google Scholar
[33] Lanir, M., Wang, C.C. and Vanderwyck, A.H.B., Appl. Physl Lett. 34, 50 (1979).Google Scholar
[34] Wang, C.C., Chu, M., Shin, S.H., Tannant, W.E. and Cheung, J.T. et al, IEEE Trans. Electron. Dev. ED-27, 154 (1980).Google Scholar
[35] Chu, M. and Wang, C.C., J. Appl. hys. 51, 2255 (1980).Google Scholar
[36] Shin, S.H., Chu, M., Vanderwyck, A.H.B., Lanir, M. and Wang, C.C., J. Appl. Phys. 51, 3772 (1980).CrossRefGoogle Scholar
[37] Shin, S.H., Vanderwyck, A.H.B., Kim, J.C. and Cheung, D.T., Appl. Phys. Lett. 37, 402 (1980).Google Scholar
[38] Chu, M., Vanderwyck, A.H.B. and Cheung, D.T. 37, 486 (1980).Google Scholar
[39] Pasko, J.G., Shin, S.H. and Cheung, D.T., Proc. SPIE int. Soc. Opt. Eng. 282, 89 (1981).Google Scholar
[40] Kim, M.E., Taur, Y., Shin, S.H., Bostrup, G., Kim, J.C. and Cheung, D.T., Appl. Phys. Lett. 39 336 (1981).Google Scholar
[41] Shin, S.H., Pasko, J.G. and Cheung, D.T., IEEE Trans. Electron. Dev. EDL-2, 177 (1981).CrossRefGoogle Scholar
[42] Bajaj, J., Shin, S.H., Bostrup, G. and Cheung, D.T., J. Vac. Sci. Technol. 21, 244 (1982).Google Scholar
[43] Shin, S.H., Pasko, J.G., Law, H.D. and Cheung, D.T., Appl. Phys. Lett 40 965 (1982).Google Scholar
[44] Feldman, B.J., Bajaj, J. and Shin, S.H., J. Appl. Phys. 55, 3873 (1984).Google Scholar
[45] Edwall, D.D., Gertner, E.R. and Tennant, W.E., J. Appl. Phys.. 55, 1453 (1984).Google Scholar
[46] Edwall, D.D., Gertner, E.R. and Tennant, W.E., Proc. IRIS Detector Specialty Meeting, Seattle, WA (1984).Google Scholar
[47] Bubulac, L.O., Tennant, W.E., Reidel, R.A. and Magee, T.J., J. Vacuum Sci. Technol. 21, 251 (1982).Google Scholar
[48] Polisar, E.L., Boinykh, N. M, Indenbaum, G.V., Vanyukov, A.V. and Schastlivyi, V.P., Izv. Vyssh. Ucheb. Zaved. Fiz. 11, 81 (1968).Google Scholar