Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-17T16:58:02.207Z Has data issue: false hasContentIssue false

Liquid injection MOCVD and ALD studies of “single source” Sr-Nb and Sr-Ta precursors

Published online by Cambridge University Press:  01 February 2011

Richard J. Potter
Affiliation:
Department of Material Science & Eng., University of Liverpool, Liverpool, L69 3BX, UK.
Paul A. Marshall
Affiliation:
Department of Material Science & Eng., University of Liverpool, Liverpool, L69 3BX, UK.
John L. Roberts
Affiliation:
Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK.
Anthony C. Jones
Affiliation:
Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK. Epichem Oxides and Nitrides, Power Road, Bromborough, Wirral, Merseyside, CH62 3QF, UK.
Paul R. Chalker
Affiliation:
Department of Material Science & Eng., University of Liverpool, Liverpool, L69 3BX, UK.
Marko Vehkamäki
Affiliation:
Department of Chemistry, University of Helsinki, FIN-00014, Helsinki, Finland.
Mikko Ritala
Affiliation:
Department of Chemistry, University of Helsinki, FIN-00014, Helsinki, Finland.
Markku Leskelä
Affiliation:
Department of Chemistry, University of Helsinki, FIN-00014, Helsinki, Finland.
Paul A. Williams
Affiliation:
Epichem Oxides and Nitrides, Power Road, Bromborough, Wirral, Merseyside, CH62 3QF, UK.
Hywel O. Davies
Affiliation:
Epichem Oxides and Nitrides, Power Road, Bromborough, Wirral, Merseyside, CH62 3QF, UK.
Neil L. Tobin
Affiliation:
Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK.
Lesley M. Smith
Affiliation:
Epichem Oxides and Nitrides, Power Road, Bromborough, Wirral, Merseyside, CH62 3QF, UK.
Get access

Abstract

A range of “single source” Sr-Nb and Sr-Ta heterometal alkoxides precursors are investigated as potential sources for liquid injection MOCVD (metalorganic chemical vapour deposition) and ALD (atomic layer deposition) of SrBi2Ta2O9 (SBT) and SrBi2(TxNb1-x)2O9 (SBTN). These “single source” precursors are designed to alleviate the mis-match between conventional Sr and Ta or Sr and Nb sources. Strontium-tantalate and strontium-niobate thin films were deposited on silicon using the “single source” alkoxide precursors [Sr{Ta(OEt)5(dmae}2] and [Sr{Nb(OEt)5(dmae)}2] (dmae = OCH2CH2NMe2), and the optimum temperatures for deposition of stoichiometric SrTa2O6 and SrNb2O6 were determined. Separate ALD studies of [Sr{Ta(OEt)5(dmae)}2] and [Sr{Ta(OEt)5(mee)}2] (mee = OCH2CH2OMe) for the growth of strontium-tantalate were carried out to assess precursor suitability for this technique. Liquid injection MOCVD of Bi-oxide films using Bi(mmp)3 indicates similar decomposition behaviour to the Sr-Ta and Sr-Nb alkoxides, demonstrating its suitability as a complementary source of Bi for SBT, SBN and SBTN.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zhang, S.B., Guo, X.Y., Xu, J.T., Ferroelectronics, 232, 1055 (1999).Google Scholar
2. Gensbittel, A., Degardin, A.F., Kreisler, A.J., Guilloux-Viry, M., Perrin, A., Crozat, P., Ferroelectronics, 288, 103 (2003).Google Scholar
3. Rosenman, G., Shur, D., Krasik, Y.E., Dunaevsky, A., J. Appl. Phys., 88 (11), 6109 (2000).Google Scholar
4. Bornand, V, Papet, P, Ferroelectronics, 288, 187 (2003).Google Scholar
5. Ramesh, R., Aggarwal, S., Auciello, O., Mater. Sci. Eng. R, 32 (6): 191 (2001).Google Scholar
6. Paz de Arauja, C.A., Cuchiaro, J.D., McMillan, K.D., Scott, M.C. and Scott, J.F., Nature, 347, 627 (1995).Google Scholar
7. Funakubo, H., Ishikawa, K., Watanabe, T., Mitsuya, M. and Nukaga, N., Adv. Mater. Opt. Electron., 10, 193 (2000).Google Scholar
8. Smolenskii, G.A., Isupov, V.A. and Agranovskara, A.I., Sov. Phys. Solid State, 1, 149 (1959).Google Scholar
9. Roeder, J.F., Hendrix, B.C., Hintermeier, F., Desrochers, D.A., Baum, T.H., Bhandari, G., Chappius, M., Van Buskirk, P.C., Dehm, C., Fritsch, E., Nagel, N., Wendt, H., Cerva, H., Honlein, W. and Mazure, C., J. Eur. Ceram. Soc., 19, 1463. (1999).Google Scholar
10. Isobe, C., Ami, T., Hironaka, K., Watanabe, K., Sugiyama, M., Nagel, N., Katori, K., Ikeda, Y., Gutleben, C.D., Tanaka, M., Yaamoto, H. and Yagi, H., Integrated Ferroelectrics, 14, 95 (1997)Google Scholar
11. Crosbie, M.J., Wright, P.J., Jones, A.C., Leedham, T.J., O'Brien, P. and Critchlow, G.W., Chem. Vap. Deposition, 5, 9 (1999).Google Scholar
12. Shin, W.C., Choi, K.J., Choi, E.S., Park, C.M. and Yoon, S.G., Int. Ferroelectrics, 30, 27 (2000).Google Scholar
13. Kodakura, H., Okuhara, Y., Mitsuya, M. and Funakubo, H., Chem. Vap. Deposition, 6, 225 (2000)Google Scholar
14. Jones, A.C., Tobin, N.L., Marsahall, P.A., Potter, R.J., Bickley, J.F., Davies, H.O., Smith, L.M. and Critchlow, G.W., J. Mater. Chem., submitted.Google Scholar
15. Suntola, T., Thin Solid Films, 216, 84 (1992).Google Scholar
16. Davies, H.O., Jones, A.C., Leedham, T.J., O'Brien, P., White, A.J.P. and Williams, D.J., J. Mater. Chem., 8, 2315 (1998).Google Scholar
17. Jones, A.C., Leedham, T.J., Wright, P.J., Crosbie, M.J., Lane, P.A. and O'Brien, P., Mater. Res. Soc. Symp. Proc., 495, 11 (1998).Google Scholar
18. Ho, M.M.T., Mak, C.L. and Wong, K.H., J. European Ceramic Society, 19, 1115 (1999).Google Scholar
19. Ritala, M., Kukli, K., Rahtu, A., Räisänen, P. I., Leskelä, M., Sajavaara, T., Keinonen, J., Science 288, 219 (2000).Google Scholar
20. Ritala, M., Leskelä, M., Dekker, J.-P., Mutsaers, C., Soininen, P.J., Skarp, J., Chem. Vap. Deposition 5, 7, (1999).Google Scholar
21. Joint Committee of Powder Diffraction Standards, Card 38–0828Google Scholar
22. Vehkamäki, M., Ritala, M., Leskalä, M., Jones, A.C., Davies, H.O., Sajavaara, T. and. Rauhala, , J. Electrochem. Soc., submitted.Google Scholar