Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-05T12:57:51.769Z Has data issue: false hasContentIssue false

Liquid Crystal Behavior of V2O5·nH2O Gels

Published online by Cambridge University Press:  16 February 2011

J. Livage
Affiliation:
Chimie de la Matière Condensée, Université ParisVI - Paris -, FRANCE
P. Davidson
Affiliation:
Physique des Solides, Université ParisSud, Orsay -, FRANCE
X. Commeinhes
Affiliation:
Physique des Solides, Université ParisSud, Orsay -, FRANCE
O. Pelletier
Affiliation:
Physique des Solides, Université ParisSud, Orsay -, FRANCE
Get access

Abstract

Most liquid crystals are made of organic molecules, very few of them are based on mineral compounds. Vanadium pentoxide gels and sols have been shown to give mesophases. They are made of ribbon-like polymeric particles of vanadium pentoxide dispersed in water. Ansitropic xerogel layers are formed when these gels are deposited and dried onto flat substrates. Dehydration is reversible and fluid phases are again obtained via a swelling process when water is added to the xerogel.

When observed by polarized light microscopy, colloidal suspensions of V2O5 ribbons display defects typical of lyotropic nematic phases. Dilute nematic suspensions can even be oriented by applying a magnetic field of about 0.5 Tesla. Such a liquid crystal behavior is mainly due to the highly anisotropic shape of vanadium oxide colloidal particles. Acid dissociation at the oxide/water interface gives rise to surface electrical charges and electrostatic repulsions should also be responsible for the stabilization of the nematic phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Livage, J., Chem. Mater. 3, p. 578 (1991)Google Scholar
2. Sanchez, C., Babonneau, F., Morineau, R., Livage, J., Phil. Mag. B47, p. 279 (1983)Google Scholar
3. Livage, J., Solid State Ionics, 86-88, p. 935 (1996)]Google Scholar
4. Aldebert, P., Baffler, N., Gharbi, N., Livage, J., Mater. Res. Bull. 16, p. 1117 (1978)Google Scholar
5. Kanatzidis, M.G., Wu, C-G., Marcy, H.O., Kannewurf, C.R., J. Am. Chem. Soc. 111, p. 4139 (1989)Google Scholar
6. Zocher, H., Zeit. Anorg. Allg. Chem. 147, p. 91 (1925)Google Scholar
7. Davidson, P., Garreau, A., Livage, J., Liquid Crystals, 16, p. 905 (1994)Google Scholar
8. Gharbi, N., Sanchez, C., Livage, J., Lemerle, J., Nejem, L., Lefebvre, J., Inorg. Chem. 21, p. 2758 (1982)Google Scholar
9. Legendre, J.J., Livage, J., J. Colloid Interf. Sci. 94, p. 75 (1983)Google Scholar
10. Legendre, J.J., Aldebert, P., Baffier, N., Livage, J., J. Colloid Interf. Sci. 94, p. 84 (1983)Google Scholar
11. Yao, T., Oka, Y., Yamamcoto, N., Mat. Res. Bull. 27, p. 669 (1992)Google Scholar
12. Aldebert, P., Baffier, N., Gharbi, N., Livage, J., Mater. Res. Bull. 16, p. 669 (1981)Google Scholar
13. Aldebert, P., Haesslin, H.W., Baffier, N., Livage, J., J. Colloid Interf. Sci. 98, p. 478 (1984)Google Scholar
14. Davidson, P., Bourgaux, C., Schoutteten, L., Sergot, P., Williams, C., Livage, J., J. Phys. II France, 5, p. 1577 (1995)Google Scholar
15. Watson, J.H.L., Heller, W., Wojtowicz, W., Science, 109, p. 274 (1949)Google Scholar
16. Commeinhes, X., Davidson, P., Bourgaux, C., Livage, J., Adv. Mater. 9, p. 900 (1997)Google Scholar
17. Davidson, P., Batail, P., Gabriel, J.C.P., Livage, J., Sanchez, C., Bourgaux, C., Prog. Polym. Sci. 22, p. 913 (1997)Google Scholar
18. Henry, M., Jolivet, J.P., Livage, J., Structure and Bonding, 77, p. 155 (1992)Google Scholar