Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T09:04:15.815Z Has data issue: false hasContentIssue false

Lipase Immobilized within Novel Silica-based Hybrid Foams: Synthesis, Characterizations and Catalytic Properties

Published online by Cambridge University Press:  01 February 2011

Nicolas Brun
Affiliation:
[email protected], Centre de Recherche Paul Pascal, Pessac, France
Annick Babeau
Affiliation:
[email protected], Centre de Recherche Paul Pascal, Pessac, France
Victor Oestreicher
Affiliation:
[email protected], Centre de Recherche Paul Pascal, Pessac, France
Hervé Deleuze
Affiliation:
[email protected], Institut des Sciences Moléculaires, Talence, France
Clément Sanchez
Affiliation:
[email protected], Laboratoire de Chimie de la Matière Condensée de Paris, Paris, France
Rénal Backov
Affiliation:
[email protected], Centre de Recherche Paul Pascal, Pessac, France
Get access

Abstract

The covalent immobilization of crude lipases within silica-based macroporous frameworks have been performed by combining sol-gel process, concentrated direct emulsion, lyotropic mesophase and post-synthesis functionalizations. The as-synthesized open cell hybrid monoliths exhibit high macroscopic porosity, around 90 %, providing interconnected scaffold while reducing the diffusion low kinetic issue. The entrapment of enzymes in such foams deals with a high stability over esterification and transesterification batch process catalysis.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Klibanov, A. M., Science 219, 722 (1983).Google Scholar
2 Zhou, G., Chen, Y., and Yan, S., Micro. Meso. Mater. 119, 223 (2009).Google Scholar
3 Mateo, G., Fernandez-Lorente, G., Abian, O., Fernandez-Lafuente, R., and Guisan, J. M., Biomacromolecules 1, 739 (2000).Google Scholar
4 Reetz, M. T., Zonta, A., and Simplekamp, J., Biotechnology and Bioengineering 49, 527 (1996).Google Scholar
5 Backov, R., Soft Matter 2, 452 (2006).Google Scholar
6 Barby, D., and Haq, Z., Eur. Patent 0060138 (1982).Google Scholar
7 Brun, N., Julian-Lopez, B., Hesemann, P., Laurent, G., Deleuze, H., Sanchez, C., Achard, M.-F., and Backov, R., Chem. Mater. 20, 7117 (2008).Google Scholar
8 Brun, N., Babeau-Garcia, A., Sanchez, C., and Backov, R., French Patent FR0954634 (2009).Google Scholar
9 Awang, R., Ghazuli, M.R., and Basri, M., Am. J. Biochem. Biotech. 3, 163 (2007).Google Scholar
10 Dizge, N., and Keskinler, B., Biomass and Bioenergy 32, 1274 (2008).Google Scholar