Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-20T04:00:50.981Z Has data issue: false hasContentIssue false

Linear Polarization of Porous Si Photoluminescence

Published online by Cambridge University Press:  15 February 2011

N. A. Gippius
Affiliation:
General Physics Institute, RAS, Vavilova Street 38, Moscow 117333, Russia, [email protected]
S. G. Tikhodeev
Affiliation:
General Physics Institute, RAS, Vavilova Street 38, Moscow 117333, Russia, [email protected]
Al. L. Efros
Affiliation:
Beam Theory Section, Naval Research Laboratory, Washington, DC 20375, USA
M. Rosen
Affiliation:
Beam Theory Section, Naval Research Laboratory, Washington, DC 20375, USA
D. Kovalev
Affiliation:
Technische Universität München, Physik-Department E16, D-85747 Garching, Germany
M. Ben Chorin
Affiliation:
Technische Universität München, Physik-Department E16, D-85747 Garching, Germany
J. Diener
Affiliation:
Technische Universität München, Physik-Department E16, D-85747 Garching, Germany
F. Koch
Affiliation:
Technische Universität München, Physik-Department E16, D-85747 Garching, Germany
Get access

Abstract

We demonstrate experimentally that linear polarization of porous Si photoluminescence depends significantly on the excitation geometry and describe this effect within the framework of a dielectric model in which porous Si is considered as an aggregate of slightly deformed, elongated and flattened, dielectric elliptical Si nanocrystals with preferred orientation in the [100] direction. The theoretical best-fit analysis of the experimental data allows us to get certain information concerning the shapes and orientation of the ellipsoids.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
2. Lehmann, V. and Gösele, U., Appl. Phys. Lett. 58, 856 (.1991)Google Scholar
3. Cullis, A. G., Canham, L. T., Dosser, O. D., Mat. Res. Soc. Symp. Proc. 256, 7 (1992).Google Scholar
4. Kovalev, D., Chorin, M. Ben, Diener, J., Koch, F., Efros, Al. L., Rosen, M., Gippius, N. A., and Tikhodeev, S. G., Appl. Phys. Lett. 67, 1585 (1995)Google Scholar
5. Ils, P., Gréus, Ch. Forchel, A., Kulakovskii, V. D., Gippius, N. A., and Tikhodeev, S. G., Phys. Rev. B 51, 4272 (1995).Google Scholar
6. Landau, L. D., Lifshitz, E. M., and Pitaevskii, L. P., Electrodynamics of Continuous Media, Pergamon Press Ltd., 2nd edition, Oxford, 1984.Google Scholar
7. Aspnes, D. E. and Studna, A. A., Phys. Rev. B 27, 985 (1983).Google Scholar