Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T15:43:20.101Z Has data issue: false hasContentIssue false

Linear and cross-linked mixed conducting polycarbazoles for electrochromic devices

Published online by Cambridge University Press:  15 March 2011

François Tran-Van
Affiliation:
Laboratoire sur les Polymères et les Matériaux Electroactifs, (EA 2528), Université de Cergy-Pontoise, 5 mail Gay Lussac, 95013 Cergy Pontoise., FRANCE
Cédric Vancaeyzeele
Affiliation:
Laboratoire sur les Polymères et les Matériaux Electroactifs, (EA 2528), Université de Cergy-Pontoise, 5 mail Gay Lussac, 95013 Cergy Pontoise., FRANCE
Thierry Henri
Affiliation:
Laboratoire sur les Polymères et les Matériaux Electroactifs, (EA 2528), Université de Cergy-Pontoise, 5 mail Gay Lussac, 95013 Cergy Pontoise., FRANCE
Juozas V. Grazulevicius
Affiliation:
Department of Organic Technology, Kaunas University of Technology, Radvilenu Plentas 19, LT 3028, Kaunas, LITHUANIA
Claude Chevrot
Affiliation:
Laboratoire sur les Polymères et les Matériaux Electroactifs, (EA 2528), Université de Cergy-Pontoise, 5 mail Gay Lussac, 95013 Cergy Pontoise., FRANCE
Get access

Abstract

A carbazole N-substituted by an oxyethylene group was polymerized using oxidative electro-polymerization. Due to the hydrophilic properties of the oligooxyethylene substituent, this monomer can be electropolymerized in aqueous solution. An acidic medium is particularly appropriate in order to decrease the oxidation potential of the monomer and to obtain films mainly composed of oligomers as revealed by SEC analysis. More particularly interesting is the stability of such material during polarization. In acidic medium 1.25 mol.L-1 HClO4, 95% of the charge density was maintained after polarization for 7000 cycles which shows the good electrochemical stability of this material compared to other polycarbazoles. Moreover, films are electroactive in aqueous electrolytes and would be well-compatible with polyethylene-oxide solid electrolytes.

In order to increase the mechanical properties of the film, we have also electropolymerized an oligomer with pendant carbazole groups obtained by acid catalyzed cationic ring opening polymerization of [N(2,3-epoxypropyl)carbazole] which leads to a new dicarbazyl cross-linked polymer with cations solvating oxyethylene segments. Due to their tridimensional structure, the mechanical strength of these films is superior to that of a linear polycarbazole film. However, their electroactivity in aqueous electrolyte is poor. So, the electropolymerization of a mixture of both monomers ensures good mechanical properties and compatibility with hydrophilic electrolyte in view to prepare an electrochromic device.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Grazulevicius, J.V., Soutar, I., Swanson, L., Macromolecules 31, 4820 (1998).Google Scholar
2. Verghese, M.M., Basu, T., Malhotra, B.D., Mater.Science. Engineering C3, 215 (1995).Google Scholar
3. Chevrot, C., Sadki, S., Kham, K., Electrochim. Acta 46, 759 (2000).Google Scholar
4. Nishino, H., Yu, G., Heeger, A.J., Chen, T.A., Rieke, R.D., Synth. Met. 68, 243 (1995).Google Scholar
5. Cosnier, S., Fologea, D., Szunerits, S., Marks, R.S., Electrochem. Commun. 2, 827 (2000).Google Scholar
6.a) Nishio, K., Fujimoto, M., Yoshinaga, N. and Furukawa, F., J. Power Sources 34, 153 (1991).Google Scholar
b) Shirota, Y., Nogami, T., Noma, N., Kakuta, T., Saito, H., Synth. Met. 41–43, 1169 (1991).Google Scholar
7.a) Mengoli, G., Musiani, M.M., Schreck, B. and Zecchin, S., J. Electroanal.Chem. 246, 73 (1988).Google Scholar
b) Cattarin, S., Mengoli, G., Musiani, M.M., Schreck, B., J. Electroanal.Chem. 246, 47 (1988).Google Scholar
c) Tran-Van, F., Henri, T., Chevrot, C., Electrochemica Acta, submittedGoogle Scholar
8. Saraç, A.S., Sezer, E. and Ustamehmetoglu, B., Polymers for Advanced Technologies 8, 556 (1997).Google Scholar
9. Taoudi, H., bernede, J.C., Valle, M.A. Del, Bonnet, A., Molinie, P., Morsli, M., Diaz, F., Tregouet, Y., Bareau, A., J. Applied Polymer Science 75, 1561 (2000).Google Scholar
10. Dubois, J. E., Desbene-Monvernay, A., Lacaze, P.C., J.Electroanal.Chem. 132, 177 (1982).Google Scholar
11. Booth, T.W., Evans, S., Maud, J.M., J. Chem. Soc., Chem. Commun. 196 (1989).Google Scholar
12.a) Compton, R.G., Davis, F.J., Grant, S.C., J. Applied Electrochem. 16, 239 (1986).Google Scholar
b) Papez, V., Inganäs, O., Cimrova, V., Nespurek, S., J. Electroanal. Chem. 282, 123 (1990).Google Scholar
c) Bhadani, S.N., J. Applies Polym. Sc. 42, 1271 (1991).Google Scholar
13. Fenton, B., Parker, J.M., Wright, P.V., Polymer 14, 589 (1973).Google Scholar
14. Ohsedo, Y., Imae, I., and Shirota, Y., Synth. Metals 102, 969 (1999).Google Scholar
15. Bazzaoui, E.A., Aeiyach, S., Lacaze, P.C., J. Electroanal.Chem. 364, 63 (1994).Google Scholar
16. Nawa, K., Imae, I., Noma, N., Shirota, Y., Macromolecules 28, 723 (1995).Google Scholar
17. Ohsedo, Y., Imae, I., Noma, N. and Shirota, Y., Synth. Metals 81, 157 (1996).Google Scholar