Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T15:12:36.329Z Has data issue: false hasContentIssue false

Linear and Circular Dichroism in Angle Resolved Fe 3p Photoemission

Published online by Cambridge University Press:  15 February 2011

E. Tamura
Affiliation:
Lawrence Livermore National Laboratory, University of California, Livermore, CA 94550
G. D. Waddill
Affiliation:
Lawrence Livermore National Laboratory, University of California, Livermore, CA 94550
J. G. Tobin
Affiliation:
Lawrence Livermore National Laboratory, University of California, Livermore, CA 94550
P. A. Sterne
Affiliation:
Lawrence Livermore National Laboratory, University of California, Livermore, CA 94550 Department of Physics, University of California, Davis, CA 95616
Get access

Abstract

Using a recently developed spin-polarized, fully relativistic, multiple scattering approach based on the layer KKR Green function method, we have reproduced the Fe 3p angle-resolved soft x-ray photoemission spectra and analyzed the associated large magnetic dichroism effects for excitation with both linearly and circularly polarized light. Comparison between theory and experiment yields a spin-orbit splitting of 1.0 – 1.2 eV and an exchange splitting of 0.9 – 1.0 eV for Fe 3p. These values are 50 – 100 % larger than those hitherto obtained experimentally.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Roth, Ch. et al., Phys. Rev. Lett. 70, 3479 (1993), Solid State Commun. 86, 647 (1993)Google Scholar
[2] Thole, B. T. and van der Laan, G., Phys. Rev. B 49, 9613 (1994)Google Scholar
[3] Ebert, H. et al., Phys. Rev. B44 4406 (1991)Google Scholar
[4] Sorotti, F. et al., Phys. Rev. B48 8299 (1993)Google Scholar
[5] Ebert, H., J.Phys. Matter 1, 9111 (1989)Google Scholar
[6] Pappas, D.P. et al., J. Appl.Phys. 73, 5926 (1993)Google Scholar
[7] Gollisch, H. et al., Solid State Commun. 82 197 (1992)Google Scholar
[8] Tamura, E., Mat. Rec. Soc. Symp. Proc. 253, 347 (1992)Google Scholar
[9] Liebsch, A., Phys. Rev. Lett. 43, 1431 (1979), Phys. Rev. B23 5203 (1981)Google Scholar
[10] Thole, B. T. and van der Laan, G., Phys. Rev. Lett. 67, 3306 (1991), Phys. Rev. B44, 12424 (1991)Google Scholar
[11] van der Laan, G. et al., Phys. Rev. Lett. 69, 3827 (1992)Google Scholar
[12] Doniach, S. and Sunjic, M., J. Phys. C 3, 285 (1970)Google Scholar
[13] Tamura, E., in preparation. In contrast to the usual core-state calculation (e.g. Ref.[5]) we solve the Dirac equation in a Green function formalism on the complex-energy plane.Google Scholar
[14] Takeda, T., Z. Physik B 32, 43 (1978)Google Scholar
[15] Tamura, E. and Feder, R., Europhys. Letters 16, 695 (1991)Google Scholar