Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T07:50:41.449Z Has data issue: false hasContentIssue false

Light Scattering by Isolated Nanoparticles with Arbitrary Shapes

Published online by Cambridge University Press:  17 March 2011

Cecilia Noguez
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, México D.F., México
Iván O. Sosa
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, México D.F., México
Rubén G. Barrera
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, México D.F., México
Get access

Abstract

Using the Discrete Dipole Approximation we have studied the optical properties of different isolated nanoparticles with arbitrary shapes. We have investigated the main features in the optical spectra, depending of the geometry and size of such nanoparticles. We present and discuss our results in terms of the scattering, extinction and absorption optical coefficients, which can be directly compared with experiments. The results are discussed in terms of the optical signature of each nanoparticle depending of its size and shape.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.See for example, Mater. Res. Bull. 23 (2), 31 (1998); and references therein.Google Scholar
2. Damilano, B., et al J. of Crystal Growth, 227–226, 466 (2001)Google Scholar
3. Zheng, M.J., et al. Semicond. Sci. Technol 16, 507 (2001)Google Scholar
4. Kim, TW, et al. Solid State Comm. 118, 465 (2001)Google Scholar
5. Cirlin, G.E., et al. Material Scence and Engineering, B80, 108 (2001)Google Scholar
6. Roman-Velazquez, C. E., et al., MRS Symposium Proceedings 581, 485 (2000).Google Scholar
7. Beitia, C., Borensztein, Y., Barrera, R. G., Roman, C. E., Noguez, C., Physica B 279, 25 (2000).Google Scholar
8. Roman, C. E., Noguez, C., Barrera, R.G., Physical Review B, 61, 10427 (2000).Google Scholar
9. Liu, N., et al., Phys. Rev. Lett. 84, 334 (2000).Google Scholar
10. Zou, J., Liao, X.Z., Cockayne, D.J.H., and Leon, R., Phys. Rev. B 59, 12279 (1999).Google Scholar
11. Yang, W., Lee, H., Johnson, T.J., Sercel, P.C., and Norman, A.G., Phys. Rev. B 61, 2784 (2000).Google Scholar
12. Yacamán, M. José, et al., J. Vac. Sci. Technol. B 19, 1091 (2001).Google Scholar
13. Félidj, N., Aubard, J., and L/'evi, G., J. Chem. Phys. 111, 1195 (1999).Google Scholar
14. Purcell, E.M. and Pennypacker, C.R., Astrophys. J. 186, 705 (1973).Google Scholar
15. Draine, B.T., Astrophys. J. 333, 848 (1998); B. T. Draine and J.J. Goodman, Astrophys. J. 405, 685 (1993); B. T. Draine and P.J. Flatau, J. Opt. Am. A 11, 1491 (1994).Google Scholar