Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T01:47:54.211Z Has data issue: false hasContentIssue false

Light Effective Mass in the Widely-Dispersed Valence Band of Single Crystalline Rubrene Observed by High-Resolution Angle-Resolved Ultraviolet Photoelectron Spectroscopy

Published online by Cambridge University Press:  31 January 2011

Yasuo Nakayama
Affiliation:
[email protected], Chiba University, Center for Frontier Science, Chiba, Japan
Shin-ichi Machida
Affiliation:
[email protected], Chiba University, Graduate School of Advanced Integration Science, Chiba, Japan
Steffen Duhm
Affiliation:
[email protected], Chiba University, Graduate School of Advanced Integration Science, Chiba, Japan
Qian Xin
Affiliation:
[email protected], Chiba University, Graduate School of Advanced Integration Science, Chiba, Japan
Akihiro Funakoshi
Affiliation:
[email protected], Chiba University, Graduate School of Advanced Integration Science, Chiba, Japan
Naoki Ogawa
Affiliation:
[email protected], Chiba University, Graduate School of Advanced Integration Science, Chiba, Japan
Satoshi Kera
Affiliation:
[email protected], Chiba University, Graduate School of Advanced Integration Science, Chiba, Japan
Nobuo Ueno
Affiliation:
[email protected], Chiba University, Graduate School of Advanced Integration Science, Chiba, Japan
Yutaka Noguchi
Affiliation:
[email protected], Chiba University, Center for Frontier Science, Chiba, Japan
Hisao Ishii
Affiliation:
[email protected], Chiba University, Center for Frontier Science, Chiba, Japan
Get access

Abstract

High-resolution angle resolved ultraviolet photoelectron spectroscopy measurements were conducted on rubrene single crystals successfully through relief of the sample charging assisted by a laser illumination. Significant dispersion of the valence band was clearly resolved. The band width W and the hole effective mass mh* were estimated to be 0.4 eV and 0.7m0, respectively, along the most conductive direction. The present results strongly suggest that the transport nature in rubrene single crystals should be described in the band transport framework of a delocalized charge carrier.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Takeya, J., Yamagami, M., Tominari, Y., Hirahara, R., Nakazawa, Y., Nishikawa, T., Kawase, T., Shimoda, T. and Ogawa, S., Appl. Phys. Lett. 90, 102120, (2007).Google Scholar
2 Podzorov, V., Menard, E., Rogers, J. A. and Gershenson, M. E., Phys. Rev. Lett. 95, 226601 (2005).Google Scholar
3 Takeya, J., Kato, J., Hara, K., Yamagishi, M., Hirahara, R., Yamada, K., Nakazawa, Y., Ikehata, S., Tsukagoshi, K., Aoyagi, Y., Takenobu, T. and Iwasa, Y., Phys Rev. Lett. 98, 196804 (2007).Google Scholar
4 Hulea, I. N., Fratini, S., Xie, H., Mulder, C. L., Iossad, N. N., Rastelli, G., Ciuchi, S. and Morpurgo, A. F., Nature Mater. 5, 982, (2006).Google Scholar
5 Li, Z. Q., Podzorov, V., Sai, N., Martin, M. C., Gershenson, M. E., Ventra, M. Di and Basov, D. N., Phys. Rev. Lett. 99, 016403, (2007).Google Scholar
6 Sato, N., Inokuchi, H., Schmid, B. M. and Karl, N., J. Chem. Phys. 85, 5413, (1985).Google Scholar
7 Vollmer, A., Jurchescu, O. D., Arfaoui, I., Salzmann, I., Palstra, T. T. M., Rudolf, P., Niemax, J., Pflaum, J., Rabe, J. P. and Koch, N., Euro. Phys. J. E 17, 339, (2005).Google Scholar
8 Nakayama, Y., Machida, S., Tsunami, D., Kimura, Y., Niwano, M., Noguchi, Y. and Ishii, H., Appl. Phys. Lett. 92, 153306, (2008).Google Scholar
9 Nakayama, Y., Machida, S., Minari, T., Tsukagoshi, K., Noguchi, Y. and Ishii, H., Appl. Phys. Lett. 93, 173305, (2008).Google Scholar
10 Mitrofanov, O., Lang, D. V., Kloc, C., Wikberg, J. M., Siegrist, T., So, W.-Y., Sergent, M. A. and Ramirez, A., Phys. Rev. Lett. 97, 166601, (2006).Google Scholar
11 Sai, N., Tiago, M. L., Chelikowsky, J. R. and Reboredo, F. A., Phys. Rev. B 77, 161306, (2008).Google Scholar
12 Filho, D. A. d. S., Kim, E.-G. and Brédas, J.-L., Adv. Mater. 17, 1072, (2005).Google Scholar
13 Chapman, B. D., Checco, A., Pindak, R., Siegrist, T. and Kloc, C., J. Cryst. Growth 290, 479 (2006).Google Scholar
14 Ueno, N. and Kera, S., Prog. Surf. Sci. 83, 490, (2008).Google Scholar
15 Kera, S., Yamane, H. and Ueno, N., Prog. Surf. Sci. 84, 135, (2009).Google Scholar