Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T02:42:35.827Z Has data issue: false hasContentIssue false

The Lifetime of Polar-Optical Modes in Semiconductors

Published online by Cambridge University Press:  31 January 2011

Brian K Ridley
Affiliation:
Angela Dyson
Affiliation:
Department of Physics, University of Hull, Hull, UK.
Get access

Abstract

An enduring problem in the engineering of high-power semiconductor devices is how to mitigate the effect of heating. Heating means the proliferation of phonons, and phonons, interacting with electrons directly affect the electronic performance of the device. Nowhere is this more evident than the role of hot polar-optical phonons in reducing the drift velocity in the channel of an HFET and hence reducing its performance at high frequencies. The task of describing hot-phonon effects is complicated by the coupling to plasma modes. We present a theory of coupled plasmon-phonon modes in GaN, how they interact with electrons and how their lifetime becomes density-dependent. Raman scattering in bulk material shows a reduction of lifetime with increasing density and we offer an explanation for this in terms of the frequency dependence of the anharmonic decay mechanism. Hot-phonon effects, however, involve modes with wave-vectors beyond those probed by Raman scattering. By adopting a single-pole approximation for these modes we have obtained the lifetime dependence on wave vector, electron temperature and density.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Hot Carriers in Semiconductor Nanostructures (ed. Shah, Jagdeep, Academic Press, Boston, 1992).Google Scholar
[2] Kuball, M. Hayes, J. M. and Edgar, J. H. Appl. Phys. Lett. 77 1958(2000).Google Scholar
[3] Tsen, K. T. Fery, D. K. Botchkarov, A. Sverdlov, B. Salvador, A. and Morkoc, H. Appl. Phys. Lett. 72 2132(1998).Google Scholar
[4] Pomeroy, J. W. Kuball, M. Lu, H. Schaff, W.J. Wang, X. and Yoshikawa, A. Appl. Phys. Lett. 86 223501(2005).Google Scholar
[5] Eg. Ridley, B. K. Quantum Processes in Semiconductors (Clarendon Press, Oxford, 4th ed., 1999).Google Scholar
[6] Kash, J. A. and Tsang, J. C. Spectroscopy of Non-Equilibrium Electrons and Phonons, (North Holland 1992) p.151.Google Scholar
[7] Tsen, K. T. Kiang, J. G. Ferry, D. K. and Morkoç, H. Appl. Phys. Lett 89, 112111(2006).Google Scholar
[8] Matulionis, A. Katilius, R. Liberis, J. Ardaravicius, L. Eastman, L. F. Shealy, J. R. and Smart, J., J. Appl. Phys. 92 4490(2002).Google Scholar
[9] Aninkevicius, V. Matulionis, A. and Matulioniene, I. Semicond. Sci. Technol. 20 109(2005).Google Scholar
[10] Matulionis, A. J. Phys. Condens. Matter 21 174203(2009).Google Scholar
[11] Srivastava, G. P. J. Phys. Condens. Matter 21 174205(2009).Google Scholar
[12] A. Dyson and Ridley, B. K. J. Appl. Phys. 103 114507(2008).Google Scholar
[13] Klemens, P. G.. Phys. Rev. 148, 845(1966).Google Scholar
[14] Vallée, F. and Bogani, F.. Phys. Rev. B 43, 12049(1991).Google Scholar
[15] Vallée, F.. Phys. Rev. B 49, 2460(1994).Google Scholar
[16] Ridley, B. K.. J. Phys. Condens. Matter 8, L511(1996).Google Scholar
[17] Barman, S. and Srivastava, G. P.. Phys. Rev. B 69 235208(2004).Google Scholar
[18] Fried, B. D. and Conte, S. D. The Plasma Dispersion Function (London, Academic Press. 1961).Google Scholar
[19] Varga, B. B. Phys. Rev. 137 A18896(1965).Google Scholar
[20] Kim, M. E. Das, A. and D, S. Sentura. Phys. Rev. B 18, 6890(1978).Google Scholar
[21] Lowe, D. and Barker, J. R. J. Phys. C.: Solid State Phys. 18 2507(1985).Google Scholar
[22] Matulionis, A. Liberis, J. Matulioniene, I. Ramonas, M. Eastman, L. F. Shealy, J. R. Tilak, V. and Vertiatchikh, A.. Phys. Rev. B 68, 035338(2003).Google Scholar