Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T15:41:21.707Z Has data issue: false hasContentIssue false

Li Uptake in Carbon Nanotube Systems: A First Principles Investigation

Published online by Cambridge University Press:  15 March 2011

Vincent Meunier
Affiliation:
Department of Physics, North Carolina State University Raleigh, NC 27695-8202, USA
Jeremy Kephart
Affiliation:
Department of Physics, North Carolina State University Raleigh, NC 27695-8202, USA
Christopher Roland
Affiliation:
Department of Physics, North Carolina State University Raleigh, NC 27695-8202, USA
Jerry Bernholc
Affiliation:
Department of Physics, North Carolina State University Raleigh, NC 27695-8202, USA
Get access

Abstract

Carbon nanotube systems can substantially increase their capacity for Li ion uptake, provided that the nanotube interiors become accessible to the ions. We examine theoretically, with ab initio simulations, the ability of Li ions to enter a nanotube interior. While our calculations show that it is quite unlikely for the ions to pass through pristine nanotubes, they are much more likely to enter via large-sized topological defects consisting of at least 9- or more membered rings. It is unlikely that such defects are formed spontaneously, but it may be possible to induce such topological defects by violent non-equilibrium means such as ball milling, chemical means and/or ion bombardment. Indeed, recent experiments on ball milled nanotube samples do report an important increase in the Li ion uptake.

Type
Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dahn, J.R., et al., Science 270, 590 (1995); Lithium batteries: new materials, developments, and perspectives, edited by G. Pistoia (Elsevier, New York, 1994).Google Scholar
2. Dresselhaus, M.S., Dresselhaus, G., and Eklund, P.C., Sceince of Fullerenes and Carbon Nanotubes (Academic Press, San Diego, 1996).Google Scholar
3. Zhao, J., et al., Phys. Rev. Lett. 85, 1706 (2000).Google Scholar
4. Maurin, G., et al., Chem. Phys. Lett. 312, 14 (1999).Google Scholar
5. Gao, B., et al., Chem. Phys. Lett. 307, 153 (1999).Google Scholar
6. Gao, B., et al., Chem. Phys. Lett. 327, 69 (2000).Google Scholar
7. Claye, A., et al., Mol. Cryst. Liquid Cryst. 340, 743 (2000).Google Scholar
8. Bandow, S., et al., Appl. Phys. A-Mater. Sci. Process 71, 561 (2000).Google Scholar
9. Claye, A., et al., J. Electrochem. Soc 147, 2845 (2000).Google Scholar
10. Meunier, V., et al., Phys. Rev. Lett., in press, (2002).Google Scholar
11. Orlikowski, D., et al., Phys. Rev. Lett. 83, 4131 (1999).Google Scholar
12. Briggs, E.L. et al., Phys. Rev. B. 52, 5471 (1995), ibid. 54, 14362 (1996).Google Scholar
13. Kleinman, L. and Bylander, D., D., Phys. Rev. Lett. 48, 1425 (1982).Google Scholar
14. Streitwieser, A., et al., J. Phys. and Chem. Soc. 98, 4878 (1978).Google Scholar
15. Herzig, J., et al., J. Chem. and Phys. 77, 429 (1982).Google Scholar
16. Wang, C., et al., Phys. Rev. Lett. 69, 3789 (1992); Q. Zhang, et al., ibid 75, 101 (1995).Google Scholar
17. Ajayan, P., Ravikumar, V., and Charlier, J.C., Phys. Rev. Lett. 81, 1437 (1998).Google Scholar
18. Krasheninnikov, A., et al., Phys. Rev. B 63, 245405 (2001).Google Scholar
19. Nardelli, M. Buongiorno, Yakobson, B.I., and Bernholc, J., Phys. Rev. B 57, 4277 (1998).Google Scholar
20. Jia, Z.J. et al., Carbon 37, 903 (1999); Y.B.Li et al, ibid 493 (1999); N. Pierard et al., Chem. Phys. Lett. 335, 1 (2001).Google Scholar
21. Tersoff, J., Hamann, D.: Phys. Rev. Lett. 50, 1998 (1983).Google Scholar
22. Rubio, A., et al., Phys. Rev. Lett. 82, 3520 (1999).Google Scholar