Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T01:50:23.377Z Has data issue: false hasContentIssue false

Leakage Current and Dielectric Properties of Ba0.5Sr0.5TiO3 Films Deposited by RF Sputtering at Low Substrate Temperature

Published online by Cambridge University Press:  02 August 2011

Nicholas Cramer
Affiliation:
Applied Ceramics Research, 1420 Owl Ridge Road, Colorado Springs, CO 80919
Thottam S. Kalkur
Affiliation:
Dept. of Electrical and Computer Engineering, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80918
Elliot Philofsky
Affiliation:
Applied Ceramics Research, 1420 Owl Ridge Road, Colorado Springs, CO 80919
Lee Kammerdiner
Affiliation:
Applied Ceramics Research, 1420 Owl Ridge Road, Colorado Springs, CO 80919
Get access

Abstract

Most studies of Ba0.5Sr0.5TiO3 (BST) thin film deposition have focused on chemical vapor deposition or spin-on techniques. Both these techniques require high substrate temperature (greater than 600 °C), either during the deposition or during an anneal after deposition. A few groups have reported on sputtered films, but most of these studies also used high-temperature processes. While such temperatures are compatible with poly-Si plug DRAM and related technologies, they are far above the limits for technologies that require the deposition of non-refractory metals before the deposition of the ceramic film. For example, the use of Al metalization before the deposition of BST would limit the BST processing temperature to about 450 °C. A process compatible with such a temperature limit is reported. Such a process makes fabrication of high quality BST thin films difficult, primarily due to the need for oxidation and grain growth in the ceramic. The leakage current and dielectric properties of BST films deposited in such a process are reported and are shown to be sufficient for practical device applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Werner, M.C., Banerjee, I., McIntyre, P.C., Tani, N. and Tanimura, M., Appl. Phys. Lett. 77 (8), 12091211 (2000).Google Scholar
2. Shaw, T.M., Suo, Z., Huang, M., Liniger, E., Laibowitz, R.B. and Baniecki, J.D., Appl. Phys. Lett. 75 (14), 21292131 (1999).Google Scholar
3. Majumder, S.B., Jain, M., Martinez, A., Katiyar, R.S., Keuls, F.W. Van and Miranda, F.A., J. Appl. Phys. 90 (2), 896903 (2001).Google Scholar
4. Paek, S.-H., Won, J., Lee, K.-S., Choi, J.-S. and Park, C.-S., Jpn. J. Appl. Phys. 35 (11), 57575762 (1996).Google Scholar
5. Padmini, P., Taylor, T.R., Lefevre, M.J., Nagra, A.S., York, R.A. and Speck, J.S., Appl. Phys. Lett. 75 (20), 31863188 (1999).Google Scholar
6. Baumert, B.A., Chang, L.-H., Matsuda, A.T., Tsai, T.-L., Tracy, C.J., Gregory, R.B., Fejes, P.L., Cave, N.G., Chen, W., Taylor, D.J., Otsuki, T., Fuiji, E., Hayashi, S. and Suu, K., J. Appl. Phys. 82 (5), 25582566 (1997).Google Scholar
7. Tsai, M.S., Sun, S.C. and Tseng, T.Y., J. Appl. Phys. 82 (7), 34823487 (1997).Google Scholar
8. Hwang, C.S., Lee, B.T., Kang, C.S., Lee, K.H., Cho, H.-J., Hideki, H., Kim, W.D., Lee, S.I. and Lee, M.Y., J. Appl. Phys. 85 (1), 287295 (1999).Google Scholar
9. Shin, J.C., Park, J., Hwang, C.S. and Kim, H.J., J. Appl. Phys. 86 (1), 506513 (1999).Google Scholar
10. Ahn, K.H., Kim, S.S. and Baik, S., J. Appl. Phys. 93 (3), 17251730 (2003).Google Scholar
11. Lin, Y.-B. and Lee, J.Y.-M., J. Appl. Phys. 87 (4), 18411843 (2000).Google Scholar
12. Wang, Y.-P. and Tseng, T.-Y., J. Appl. Phys. 81 (10), 67626766 (1997).Google Scholar
13. Shimada, Y., Inoue, A., Nasu, T., Arita, K., Nagano, Y., Matsuda, A., Uemoto, Y., Fujii, E., Azuma, M., Oishi, Y., Hayashi, S.-I. and Otsuki, T., Jpn. J. Appl. Phys. 35 (15), 140143 (1996).Google Scholar
14. Dietz, G.W., Schumacher, M., Waser, R., Streider, S.K., Basceri, C. and Kingon, A.I., J. Appl. Phys. 82 (5), 23592364 (1997).Google Scholar