Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T21:42:35.128Z Has data issue: false hasContentIssue false

Lead Iodide Thin Films Grown Using N.N-Dimethylformamide as Solvent

Published online by Cambridge University Press:  01 February 2011

Jose Fernando Condeles
Affiliation:
[email protected], Universidade de São Paulo, Departamento de Física e Matemática, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Av. Bandeirantes 3900, Ribeirão Preto-SP, CA, 14040-901, Brazil
Ademar Marques Caldeira-Filho
Affiliation:
[email protected], Universidade de São Paulo, Departamento de Física e Matemática, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Av. Bandeirantes 3900, Ribeirão Preto-SP, CA, 14040-901, Brazil
Marcelo Mulato
Affiliation:
[email protected], Universidade de São Paulo, Departamento de Física e Matemática, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Av. Bandeirantes 3900, Ribeirão Preto-SP, CA, 14040-901, Brazil
Get access

Abstract

Spray pyrolysis was used for the deposition of lead iodide (PbI2) thin films using N.N-dimethylformamide (DMF) as an alternative solvent under varying deposition parameters. Final thickness of 60 μm was obtained for a total deposition time of 2.5 hours. The films were characterized mainly by using Raman and photoluminescence, but additional techniques such as X-ray diffraction, scanning electron microscopy and dark conductivity as a function of temperature were also employed. Thick PbI2 films deposited by spray pyrolysis using DMF as a solvent are promising to be used in medical systems as X-ray imaging.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Shah, K. S., Street, R. A., Dmitriyev, Y., Bennett, P., Cirignano, L., Klugerman, M., Squillante, M. R., Entine, G., Nuclear Instruments and Methods in Physics Research A, 458, 140, (2001).Google Scholar
[2] Lund, J. C., Shah, K. S., Squillante, M. R., Moy, L. P., Sinclair, F., Entine, G., Nuclear Instruments and Methods in Physics Research A, 283, 299, (1989).Google Scholar
[3] Oliveira, I. B., Costa, F. E., M.Armelin, J., Cardoso, L. P., Hamada, M. M., IEEE Transactions on Nuclear Science, 49(4), 1968, (2002).Google Scholar
[4] Perednis, D., Gauckler, L. J., Journal of Electroceramics, 14, 103, (2005).Google Scholar
[5] Condeles, J. F., Martins, T. M., Santos, T. C. Dos, Brunello, C. A, Rosolen, J. M. and Mulato, M., Journal of Non-Crystalline Solids, 338-340, 81, (2004).Google Scholar
[6] Condeles, J. F., Lofrano, R. C. Z., Rosolen, J. M., Mulato, M., Brazilian Journal of Physics, 36(2A), 320, (2006).Google Scholar
[7] Unagami, T., Journal of The Electrochemical Society, 146 (8) 3110, (1999).Google Scholar
[8] Klintenberg, M. K., Weber, M. J., Derenzo, D. E., Journal of Luminescence, 102-103, 287, (2003).Google Scholar
[9] Dag, I., Lifshitz, E., Journal Phys. Chem., 100, 8962, (1996).Google Scholar
[10] Levy, F., Mercier, A., J.Voitchovsky, P., Solid States Communications, 15, 819, (1974).Google Scholar
[11] Baibarac, M., Preda, N., Mihut, L., Baltog, I., Lefrant, S., Mevellec, J. Y., J. Phys.: Condens. Matter., 16, 2345, (2004).Google Scholar