Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T01:57:41.186Z Has data issue: false hasContentIssue false

A LDA+U and LDA+DMFT study of uranium mononitride: from nonmagnetic to paramagnetic and ferromagnetic

Published online by Cambridge University Press:  22 May 2014

Weiwei Sun
Affiliation:
Department of Materials Science and Engineering, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden. Department of Physics and Astronomy, Materials Theory, Uppsala University, Box 516 SE-751 20 Uppsala, Sweden.
Igor Di Marco
Affiliation:
Department of Physics and Astronomy, Materials Theory, Uppsala University, Box 516 SE-751 20 Uppsala, Sweden.
Pavel Korzhavyi
Affiliation:
Department of Materials Science and Engineering, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden.
Get access

Abstract

The combination of density functional theory in local density approximation and dynamical mean field theory (LDA+DMFT) was employed in a preliminary study of the strong electron correlation effects in a promising nuclear fuel—uranium mononitride (UN). For the ferromagnetic phase, the effective impurity problem arising in the LDA+DMFT [1-3] cycle is solved with the spin-polarized T-matrix fluctuation exchange (SPTF) solver, which includes spin–orbit interactions. Concerning the paramagnetic phase, the disordered local moment (DLM) approach was used, based on both standard local density approximation (LDA) and LDA+U. Basic spectral properties and material properties, such as the spin, orbital and total magnetic moments on U atom were calculated for various values of the Hubbard parameter U with a fixed exchange parameter J. Our main focus was to compare the calculated spectral functions (density of states) for different magnetic phases and different methods to the experimental XPS data [4]. On top of that, the total moments of the paramagnetic and ferromagnetic phases are compared with the measured values by neutron spectroscopy [4, 5].

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kotliar, G., et al. ., Rev. Mod. Phys. 78, 865 (2006).CrossRefGoogle Scholar
Held, K., Advances in Physics 56, 829 (2007).CrossRefGoogle Scholar
Katsnelson, M. I., et al. ., Rev. Mod. Phys. 80, 315 (2008).CrossRefGoogle Scholar
Samsel-Czekała, M., et al. .,Phys. Rev. B 76, 144426 (2007).CrossRefGoogle Scholar
Holden, T.M., Buyers, W.J.L., Svensson, C., Phys. Rev. B 30, 114 (1984).CrossRefGoogle Scholar
Freeman, A. J. & Lander, G. H. (eds.) Handbook on the Physics and Chemistry of the Actinides, Parts I and II (North-Holland, 1984).Google Scholar
Burkes, D. E., Fielding, R. S., Porter, D. L., Meyer, M. K. & Makenas, B. J., J. Nucl. Mater. 393, 111(2009); & Schriener, T. M. & El-Genk, M. S., Ann. Nucl. Energy 41, 48–60(2012); & Petti, D., Crawford, D. & Chauvin, N., MRS Bull. 34, 40–45 (2009).CrossRefGoogle Scholar
Proceedings of Global Future Reactor Technologies (Tsukuba, Japan, October 2005).Google Scholar
Temmerman, W. M., Svane, A., Szotek, Z., and Winter, H., in Electronic, Density Functional Theory: Recent Progress and New Directions, edited by Dobson, J. F., Vignale, G., and Das Plenum, M. P., New York, p. 327 (1998).CrossRefGoogle Scholar
Petit, L., et al. ., Phys. Rev. B 80, 045124 (2009)CrossRefGoogle Scholar
Lu, Yong, et al. ., Journal of Nuclear Materials 406, 218 (2010).CrossRefGoogle Scholar
Knott, H. W., Lander, G. H., Mueller, M. H., and Vogt, O., Phys. Rev. B 21, 4159 (1980).CrossRefGoogle Scholar
Mei, Zhi-Gang, et al. .,Journal of Nuclear Materials 440, 6369 (2013)CrossRefGoogle Scholar
Yin, Quan, et al. . Phys. Rev. B 84, 195111 (2011).CrossRefGoogle Scholar
Haule, K., Phys. Rev. B 75, 155113 (2007); & Werner, P., et al. ., Phys. Rev. Lett. 97, 076405(2006).CrossRefGoogle Scholar
Katsnelson, M. I. and Lichtenstein, A. I., J. Phys.: Condens. Matter 11, 1037 (1999); & M. I. Katsnelson and A. I. Lichtenstein, Eur. Phys. J. B 30, 9(2002); & L. V. Pourovskii, M. I. Katsnelson, and A. I. Lichtenstein, Phys. Rev. B 72, 115106 (2005).Google Scholar
Bickers, N. E. and Scalapino, D. J., Annals of Physics 193, 206 (1989), .CrossRefGoogle Scholar
Pourovskii, L., Katsnelson, M., and Lichtenstein, A., Physical Review B 72, 115106 (2005). & L. V. Pourovskii, et al., Europhys Lett. 74, 479(2006); & L. Pourovskii, et al., Physical Review B 75, 235107 (2007).CrossRefGoogle Scholar
Suzuki, M.T. and Oppeneer, P., Physical Review B 80, 161103, (2009).CrossRefGoogle Scholar
Gyorffy, B. L., et al. ., J. Phys. F: Met. Phys. 15, 1337 (1985); & B. L. Gyorffy, Phys. Rev. B 5, 2382(1972).CrossRefGoogle Scholar
Wills, J. M., et al. ., Springer Series in Solid-State Sciences, 1 195 (2010); & http://www.fplmto-rspt.org/ & Wills, J. M. et al. ., Phys Rev B 36, 3809(1987).CrossRefGoogle Scholar
Curry, N. A., Proc. Phys. Soc. London 86, 1193 (1965).CrossRefGoogle Scholar
Perdew, J., Burke, K., and Ernzerhof, M., Phys Rev Lett., 77, 3865 (1996).CrossRefGoogle Scholar
Koepernik, K. and Eschrig, H., Phys. Rev. B 59, 1743 (1999); & I. Opahle, K. Koepernik, and H. Eschrig, Phys. Rev. B 60, 14035(1999).Google Scholar
Nordstrom, Lars, et al. ., J. Phys.: Condens. Matter 4, 32613272 (1992).Google Scholar
Eriksson, O. Brooks, S. S. S., and Johansson, B., Phys. Rev, B. 41, 7311 (1990)CrossRefGoogle Scholar
Ylvisaker, Erik R., et al. .,Phys. Rev, B. 79, 035103 (2009)CrossRefGoogle Scholar