Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T06:52:51.260Z Has data issue: false hasContentIssue false

Layer-by-Layer Sputtering and Ultrathin Ion Implantation by Low-Energy Grazing Ion Bombardment

Published online by Cambridge University Press:  26 February 2011

Abdurauf Dzhurakhalov
Affiliation:
[email protected], Arifov Institute of Electronics, Theoretical Dept, F.Khodjaev Street, 33, Tashkent, Tashkent, 700125, Uzbekistan, 998 71 1627331, 998 71 1628767
Sirojiddin Rahmatov
Affiliation:
[email protected], Arifov Institute of Electronics, Theoretical Dept., Uzbekistan
Nigorakhon Teshabaeva
Affiliation:
[email protected], Arifov Institute of Electronics, Theoretical Dept., Uzbekistan
Maqsud Yusupov
Affiliation:
[email protected], Arifov Institute of Electronics, Theoretical Dept., Uzbekistan
Get access

Abstract

The ion sputtering and implantation into GaAs(001) surface at 1-5 keV Se+ grazing ion bombardment have been investigated by computer simulation.The azimuth angular dependencies of sputtering and penetration yield at grazing incidence have been calculated. It was observed that these dependencies correlate the crystal orientation. The depth distributions of 1-5 keV Se ions implanted into GaAs(001) for several azimuth angles of incidence have been presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Winter, H., Physics Reports. 367, 387 (2002).Google Scholar
2 Pedemonte, L., Bracco, G., Boragno, C., de Mongeot, F. Buatier and Valbusa, U., Phys. Rev. B 68, 115431 (2003).Google Scholar
3 Lee, S.M., Fell, C.J., Marton, D. and Rabalais, J.W., J. Appl. Phys. 83, 5217 (1998).Google Scholar
4 Labanda, J.G.C., Barnett, S.A. and Hultman, L., J. Vac. Sci. Technol. B 16, 1885 (1999).Google Scholar
5 Hansen, H., Polop, C., Michely, T., Friedrich, A. and Urbassek, H.M., Phys. Rev. Let. 92, 246106–1 (2004).Google Scholar
6 Danailov, D.M., O'Connor, D.J. and Snowdon, K.J., Surf. Sci. 347, 215 (1996).Google Scholar
7 Sule, P., Menyhard, M., Nordlund, K., Nucl. Instr. Meth. Phys. Res. B 211, 524 (2003).Google Scholar
8 Gayone, J.E., Pregliasco, R.G., Gomez, G.R., Sanchez, E.A. and Grizzi, O., Phys. Rev. B 56, 4186 (1997).Google Scholar
9 O'Connor, D.J. and Biersack, J.P., Nucl. Instr. Meth. Phys. Res. B 15, 14 (1986).Google Scholar
10 Parilis, E.S., Kishinevsky, L.M., Turaev, N.Yu., Baklitzky, B.E., Umarov, F.F., Verleger, V.Kh., Nizhnaya, S.L., Bitensky, I.S., Atomic Collisions on Solid Surfaces (North-Holl. Publ., Amsterdam, 1993) p. 634.Google Scholar
11 Dzhurakhalov, A.A. and Khafizov, I.I., Nucl. Instr. Meth. Phys.Res. B 153, 326 (1999).Google Scholar
12 Dzhurakhalov, A.A., Rahmatov, S.E. and Yadgarov, I.D., Nucl. Instr. Meth. Phys.Res. B 230, 560 (2005).Google Scholar
13 Dzhurakhalov, A.A., Microelectronic Engineering. 69, 570 (2003).Google Scholar