Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-14T02:41:57.823Z Has data issue: false hasContentIssue false

Layer-by-layer CdTe Nanoparticle Absorbers for ZnO Nanorod Solar Cells - The Influence of Annealing on Cell Performance

Published online by Cambridge University Press:  01 February 2011

Joe Briscoe
Affiliation:
[email protected], Cranfield University, Microsystems and Nanotechnology, Bedford, United Kingdom
Diego E. Gallardo
Affiliation:
[email protected], University of Cambridge, Physics, Cambridge, United Kingdom
Steve Dunn
Affiliation:
[email protected], Queen Mary, University of London, Materials, London, United Kingdom
Get access

Abstract

The conformal coating of ZnO nanorods with CdTe nanoparticles using layer-by-layer (LbL) processing produces a quantum dot-sensitised solar cell. As the number of CdTe layers increases the absorption of incident light increases below the absorption onset of the nanoparticles (650 nm). Photoluminescence investigations of the CdTe-ZnO composite structure suggest a transfer of photoexcited electrons from the CdTe nanoparticles the ZnO nanorods. Filling of the semiconductor composite structure with CuSCN provides the solar cell with a p-type semiconductor to collect the photogenerated holes from the system. Annealing the CdTe-polymer coated nanorods lowers the series resistance of the cell by removing the polymer component of the film. A cell annealed at 350 °C has a Jsc of 0.12 mAcm-2, and a Voc of 49 mV under 0.25 mW/cm2 illumination.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 O'Regan, B.; Grätzel, M. Nature, 353, 737740 (1991).Google Scholar
2 Tennakone, K.; Kumara, G. R. R. A.; Kottegoda, I. R. M.; Perera, V. P. S. & Aponsu, G. M. L. P. J. Phys. D: Appl. Phys., 31, 23262330 (1998).Google Scholar
3 Bayón, R.; Musembi, R.; Belaidi, A.; Bär, M.; Guminskaya, T.; Fischer, C. H.; Lux-Steiner, M. C.; Dittrich, T. Comptes Rendus Chimie, 9, 730734 (2006).Google Scholar
4 Plass, R.; Pelet, S.; Krueger, J.; Grätzel, M.; Bach, U. J. Phys. Chem. B, 106, 75787580 (2002).Google Scholar
5 Nadarajah, A.; Word, R. C.; VanSant, K; Könenkamp, R. Phys. Status Solidi B, 245, 18341837 (2008).Google Scholar
6 Larramona, G.; Chone, C.; Jacob, A.; Sakakura, D.; Delatouche, B.; Pere, D.; Cieren, X.; Nagino, M.; Bayon, R. Chem. Mater., 18, 16881696 (2006).Google Scholar
7 Herzog, C.; Belaidi, A.; Ogacho, A.; Dittrich, T. Energy Environ. Sci., 2, 962964 (2009).Google Scholar
8 Itzhaik, Y.; Niitsoo, O.; Page, M.; Hodes, G. J. Phys. Chem. C, 113, 42544256 (2009).Google Scholar
9 Lee, H.; Leventis, H. C.; Moon, S.-J.; Chen, P.; Ito, S.; Haque, S. A.; Torres, T.; Nesch, F.; Geiger, T.; Zakeeruddin, S. M.; Grätzel, M.; Nazeeruddin, M. K. Adv. Funct. Mater., 19, 27352742 (2009).Google Scholar
10 Könenkamp, R.; Boedecker, K.; Lux-Steiner, M. C.; Poschenrieder, M.; Zenia, F., Lévy-Clément, C.; Wagner, S. Appl. Phys. Lett., 77, 25752577 (2000).Google Scholar
11 O'Regan, B.; Schwartz, D. T.; Zakeeruddin, S. M.; Grätzel, M. Adv. Mater., 12, 12631267 (2000).Google Scholar
12 Kieven, D.; Dittrich, T.; Belaidi, A.; Tornow, J.; Schwarzburg, K.; Allsop, N.; Lux-Steiner, M. Appl. Phys. Lett., 92, 153107 (2008).Google Scholar
13 Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. Nat. Mater., 4, 455459 (2005).Google Scholar
14 Belaidi, A.; Dittrich, T.; Kieven, D.; Tornow, J.; Schwarzburg, K.; Lux-Steiner, M., Phys. Status Solidi RRL, 2, 172174 (2008).Google Scholar
15 Greene, L.; Law, M.; Tan, D.; Montano, M.; Goldberger, J.; Somorjai, G.; Yang, P. Nano Lett., 5, 12311236 (2005).Google Scholar
16 Vayssieres, L. Adv. Mater., 15, 464466 (2003).Google Scholar
17 Gaponik, N.; Talapin, D.; Rogach, A.; Hoppe, K.; Shevchenko, E.; Kornowski, A.; Eychmüller, A.; Weller, H. J. Phys. Chem. B, 106, 71777185 (2002).Google Scholar
18 Shavel, A.; Gaponik, N.; Eychmüller, A. J. Phys. Chem. B, 110, 1928019284 (2006).Google Scholar
19 Bertoni, C.; Gallardo, D.; Dunn, S.; Gaponik, N.; Eychmüller, A. Appl. Phys. Lett., 90, 034107 (2007).Google Scholar
20 Kumara, G. R. R. A.; Konno, A.; Senadeera, G. K. R.; Jayaweera, P. V. V.; Silva, D. B. R. A. D.; Tennakone, K., Sol. Energy Mater. Sol. Cells, 69, 195199 (2001).Google Scholar
21 O'Regan, B.; Lenzmann, F.; Muis, R.; Wienke, J., Chem. Mater., 14, 50235029 (2002).Google Scholar
22 Tena-Zaera, R.; Ryan, M. A.; Katty, A.; Hodes, G.; Bastide, S.; Lévy-Clément, C. Comptes Rendus Chimie, 9, 717729 (2006).Google Scholar
23 Grätzel, M. Nature, 414, 338344 (2001).Google Scholar
24 Gardner, H.; Gallardo, D. E.; Dunn, S.; Gaponik, N.; Eychmüller, A., J. Nanosci. Nanotechnol., 8, 25782581 (2008).Google Scholar
25 Vanheusden, K.; Warren, W. L.; Seager, C. H.; Tallant, D. R.; Voigt, J. A.; Gnade, B. E. J. Appl. Phys. 79, 79837990 (1996).Google Scholar
26 Wu, X. L.; Siu, G. G.; Fu, C. L.; Ong, H. C. Appl. Phys. Lett. 78, 22852287 (2001).Google Scholar
27 Francis, S.; Varshney, L.; Sabharwal, S. Eur. Polym. J., 43, 25252531 (2007).Google Scholar
28 Tena-Zaera, R.; Katty, A.; Bastide, S.; C., Lévy-Clément; O'Regan, B.; Muñoz-Sanjosé, V., Thin Solid Films, 483, 372377 (2005).Google Scholar