Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T15:26:24.733Z Has data issue: false hasContentIssue false

Lattice-Symmetry-Driven Phase Competition in Vanadium Dioxide

Published online by Cambridge University Press:  04 April 2011

A. Tselev*
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831
I. A. Luk’yanchuk
Affiliation:
Laboratory of Condensed Matter Physics, University of Picardie Jules Verne, Amiens, 80039, France
I. N. Ivanov
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831
J. D. Budai
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831
J. Z. Tischler
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831
E. Strelcov
Affiliation:
Physics Department, Southern Illinois University Carbondale, Carbondale, IL 62901
A. Kolmakov
Affiliation:
Physics Department, Southern Illinois University Carbondale, Carbondale, IL 62901
S. V. Kalinin
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831
*
*Corresponding author, e-mail: [email protected]
Get access

Abstract

We performed group-theoretical analysis of the symmetry relationships between lattice structures of R, M1, M2, and T phases of vanadium dioxide in the frameworks of the general Ginzburg-Landau phase transition theory. The analysis leads to a conclusion that the competition between the lower-symmetry phases M1, M2, and T in the metal-insulator transition is pure symmetry driven, since all the three phases correspond to different directions of the same multi-component structural order parameter. Therefore, the lower-symmetry phases can be stabilized in respect to each other by small perturbations such as doping or stress.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Morin, F. J., Phys. Rev. Lett. 3, 34 (1959).Google Scholar
2. Cavalleri, A. et al. , Phys. Rev. B 70, 161102 (2004).Google Scholar
3. Kim, H.-T. et al. , New J. Phys. 6, 52 (2004).Google Scholar
4. Zhang, S., Chou, J. Y., and Lauhon, L. J., Nano Lett. 9, 4527 (2009).Google Scholar
5. Zylbersztejn, A. and Mott, N. F., Phys. Rev. B 11, 4383 (1975).Google Scholar
6. Biermann, S. et al. , Phys. Rev. Lett. 94, 026404 (2005).Google Scholar
7. Kim, H.-T. et al. , Phys. Rev. Lett. 97, 266401 (2006).Google Scholar
8. Kübler, C. et al. , Phys. Rev. Lett. 99, 116401 (2007).Google Scholar
9. Qazilbash, M. M. et al. , Science 318, 1750 (2007).Google Scholar
10. Wei, J. et al. , Nat. Nanotechnol. 4, 420 (2009).Google Scholar
11. Lazarovits, B. et al. , Phys. Rev. B 81, 115117 (2010).Google Scholar
12. Sohn, J. I. et al. , Nano Lett. 9, 3392 (2009).Google Scholar
13. Jones, A. C. et al. , Nano Lett. 10, 1574 (2010).Google Scholar
14. Marezio, M. et al. , Phys. Rev. B 5, 2541 (1972).Google Scholar
15. Goodenough, J. B., J. Solid State Chem. 3, 490 (1971).Google Scholar
16. Rice, T. M., Launois, H., and Pouget, J. P., Phys. Rev. Lett. 73, 3042 (1994).Google Scholar
17. Eyert, V., Annalen der Physik 11, 650 (2002).Google Scholar
18. Landau, L. D. and Lifshits, E. M., Statistical Physics, Part 1 (Course of Theoretical Physics, Volume 5) (3rd edition, Butterworth-Heinemann, Oxford, UK, 1980).Google Scholar
19. Brews, J. R., Phys. Rev. B 1, 2557 (1970).Google Scholar
20. Kwok, P. C. and Miller, P. B., Physical Review 151, 387 (1966).Google Scholar
21. Gay, J. G., Albers, W. A., and Arlinghaus, F. J., J. Phys. Chem. Solids 29, 1449 (1968).Google Scholar
22. Stokes, H. T. and Hatch, D. M., Isotropy subgroups of the 230 crystallographic space groups (World Scientific Publishing Company, Singapore ; Teaneck, NY, USA, 1988).Google Scholar