Article contents
Lattice-Symmetry-Driven Phase Competition in Vanadium Dioxide
Published online by Cambridge University Press: 04 April 2011
Abstract
We performed group-theoretical analysis of the symmetry relationships between lattice structures of R, M1, M2, and T phases of vanadium dioxide in the frameworks of the general Ginzburg-Landau phase transition theory. The analysis leads to a conclusion that the competition between the lower-symmetry phases M1, M2, and T in the metal-insulator transition is pure symmetry driven, since all the three phases correspond to different directions of the same multi-component structural order parameter. Therefore, the lower-symmetry phases can be stabilized in respect to each other by small perturbations such as doping or stress.
Keywords
- Type
- Research Article
- Information
- MRS Online Proceedings Library (OPL) , Volume 1292: Symposium K – Oxide Nanoelectronics , 2011 , mrsf10-1292-k02-09
- Copyright
- Copyright © Materials Research Society 2011
References
REFERENCES
- 1
- Cited by