Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T07:59:10.522Z Has data issue: false hasContentIssue false

Lattice parameter dependence versus composition in semiconductor alloys: the InGaAs case

Published online by Cambridge University Press:  21 March 2011

C. Ferrari
Affiliation:
CNR Maspec Institute, Parco Area delle Scienze 37/A, 43010 Fontanini, Parma, Italy
E. Villaggi
Affiliation:
CNR Maspec Institute, Parco Area delle Scienze 37/A, 43010 Fontanini, Parma, Italy
N. Armani
Affiliation:
CNR Maspec Institute, Parco Area delle Scienze 37/A, 43010 Fontanini, Parma, Italy
G. Carta
Affiliation:
CNR Ictima Institute, Area della Ricerca di Padova, Corso Stati Uniti 4, 35127 Padova, Italy
G. Rossetto
Affiliation:
CNR Ictima Institute, Area della Ricerca di Padova, Corso Stati Uniti 4, 35127 Padova, Italy
Get access

Abstract

Following recent works that report a non linear dependence of the lattice parameter versus composition in some semiconductor alloys the InGaAs/InP system has been investigated. The lattice parameter and the composition of InGaAs/InP lattice matched heterostructures have been independently determined by measuring the high resolution X-ray diffraction profile and the absorption of the X-ray beam diffracted from the InP substrate. In contrast with previous results that stated a linear dependence of the lattice parameter with composition, a 6% larger In content in the InGaAs/InP lattice matched alloy is found. Such result has been confirmed by the analysis of the X-ray fluorescence induced by an electron beam on the layer and on standards made of InAs and GaAs fine ground crystals. The result is in good agreement with the predictions of models based on the elasticity theory applied on a microscopic scale.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pines, B.J., J. Phis. (U.S.S.R.) 3, 309 (1940)Google Scholar
2. Friedel, J., Phil. Mag. 46, 514 (1955)Google Scholar
3. Fournet, J., J. Phys. Radium 14, 374 (1953)Google Scholar
4. Dismukes, J. P., Ekstrom, L., and Paff, R. J., J. of Phys. Chem., 68, 3021 (1964)Google Scholar
5. Bocchi, C., Franchi, S., Germini, F., Baraldi, A., Magnanini, R., Salvador, D. De, Berti, M., Drigo, A.V., J. Appl. Phys. 86, 1298 (1999)Google Scholar
6. Gehrsitz, S., Sigg, H., Herres, N., Bachem, K., Köhler, K., Reinhart, F.K., Phys. Rev. B 60, 11601 (1999)Google Scholar
7. Wasilewski, Z. R., Dion, M. M., Lockwood, D. J., Poole, P., Streater, R. W., SpringThorpe, A. J., J. Appl. Phys. 81, 1683 (1997)Google Scholar
8. Berti, M., D. De Salvador, Drigo, A.V., Romanato, F., Stangl, J., Zerlauth, S., Schäffler, F., Bauer, G., Appl. Phys. Lett., 72, 1602 (1998)Google Scholar
9. Nakajima, K., Tanahashi, T., Akita, K., Yamaoka, T., J. Appl. Phys. 50, 4975 (1979)Google Scholar
10. Cole, J.M., Earwaker, L.G., Cullis, A. G., Chew, N. G., Bass, S. J., J. Appl. Phys. 60, 2639 (1986)Google Scholar
11. Hockings, E.F., Kudman, I., Seidel, T. E., Shmelz, C. M., Steigmeier, E., J. of Appl. Phys., 37, 2879 (1966)Google Scholar
12. Stano, A., J. of the Electroch. Soc., Vol. 134, n° 2 (1987)Google Scholar
13. Chipman, D. R., Batterman, B. W., J. Appl. Phys. 34, 912 (1963)Google Scholar
14. Brennan, S. and Cowan, P. L., Rev. Sci. Instrum. 63, 850 (1992)Google Scholar
15. Henke, B.L., Gullikson, E.M. and Davis, J.C., X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92, Atomic Data and Nuclear Data Tables, 54, no.2:181-342 (July 1993)Google Scholar
16. Chantler, C. T. J. Phys. Chem. Ref. Data 24, 71 (1995)Google Scholar
17. Seltzer, S.M., Hubbell, J.H., “45 Years (1950-1995) with X-ray Interactions and Applications” presented at 51th National Meeting of the Japanese Society of Radiological Technology, April 14-16, Nagoya, Japan (1995)Google Scholar
18. Kissel, L., Zhou, B., Roy, S. C., Gupta, S. K. Sen and Pratt, R. H., Acta Cryst. A 51, 271 (1995)Google Scholar
19. Cromer, D. T., and Liberman, D., J. Chem. Phys. 53, 1891 (1970)Google Scholar
20. Bilderback, D.H., Colella, R., Phys. Rev. B 13, 6 (1976)Google Scholar