Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-20T00:22:04.071Z Has data issue: false hasContentIssue false

Lattice Effects in Perovskite and Pyrochlore CMR Materials

Published online by Cambridge University Press:  15 February 2011

G.H. Kwei
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545, [email protected]
D.N. Argyriou
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
S.J.L. Billinge
Affiliation:
Department of Physics and Astronomy and Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48824
A.C. Lawson
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
J.J. Neumeier
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
A.P. Ramirez
Affiliation:
Bell Laboratories, Lucent Technologies, 600 Mountain Avenue, Murray Hill, NJ 07974
M.A. Subramanian
Affiliation:
Dupont Central Research and Development. Experimental Station, Wilmington, DE 19880
J.D. Thompson
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
Get access

Abstract

Colossal magnetoresistance (CMR) in doped lanthanum manganite thin films (Lai.xMx, where M is a divalent ion) has been shown to result in a factor of 106 suppression of the resistance. The driving force for the CMR transition is thought to be the double-exchange (DE) interaction. Many studies of both the crystal structure and the local structure of the Lai.xMxMnO3 (with M = Ca, Sr and Ba, as well as Pb) system have now been carried out. As expected, these systems all show a strong coupling of the lattice to the CMR transition. On the other hand, neutron diffraction data and x-ray absorption studies for the Ti2mn2O7 pyrochlore, which also exhibits CMR, shows no deviations from ideal stoichiometry, mixed valency, or Jahn-Teller distortions of the MnO6 octahedron. We present results of crystallographic and local structural studies of these two important classes of CMR materials. compare the differences in structural response, and discuss the implications of these findings to our understanding of these materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jonker, G.H. and Van Santen, J.H., Physica 16, 337 (1950) andGoogle Scholar
Jongker, G.H., Physica. 22, 707 (1956);Google Scholar
Volger, J., Physica 20, 49 (1954);Google Scholar
Searle, C.W. and Wang, S.T., Can. J. Phys. 47. 2∼03 (1969);Google Scholar
Searle, C.W. and Wang, S.T., Can. J. Phys. 48, 2023 (1970).Google Scholar
2. von Helmholt, R., Weckerg, J., Holzapfel, J., Schultz, L. and Samwer, K., Phys. Rev. Lett. 71. 2331 (1993) andGoogle Scholar
Jin, S., Tiefel, T.H., McCormack, M., Fastnacht, R.A., Ramesh, R. and Chen, L.H., Science 264, 413 (1994).Google Scholar
3. Zener, , Phys. Rev. 82, 403 (1951);Google Scholar
Anderson, P.W. and Hasegawa, H., Phys. Rev. 100. 675 (1955);Google Scholar
de Gennes, P.-G., Phys. Rev. 118, 141 (1960).Google Scholar
4. Milüs, A.J., Littlewood, P.B. and Shraiman, B.I., Phys. Rev. Lett. 74, 5144 (1995 Google Scholar
Milis, A.J., Shraiman, B.I. and Mueller, R., Phys. Rev. Lett. 77, 175 (1996);Google Scholar
Roder, H., Zhang, J. and Bishop, A.R., Phys. Rev. Lett. 76, 1356 (1996).Google Scholar
5. Wollan, E.O. and Koehler, W.F., Phys. Rev. 100, 545 (1955).Google Scholar
6. Poliert, E., Krupićká, S. and Kuzmiová, , J. Phys. Chem. Solids 43, 1137 (1982.:Google Scholar
Jirák, Z.. Krupic'ká, S., Śimśa, Z., Dlouhá, M. and Vratislav, S., J. Mag. Mag. Mat. 53, 153 (1985).Google Scholar
7. Ibarra, M.R., Algarabel, P.A., Marquina, C., Blasco, J. and Garcia, J., Phys. Rev. Lett. 75. 3451 (1995).Google Scholar
8. Radaelli, P.G., Marezio, M., Hwang, H.Y., Cheong, S-W. and Batlogg, B., Phys. Rev. Lett. 75. 4488(1995).Google Scholar
9. Dai, P., Zhang, J., Mook, H.A., Liou, S.-H., Dowben, P.A. and Plummer, E.W., Phvs. Rev. B54. R3694(1996).Google Scholar
10. Argyriou, D.N., Mitchell, J.F., Potter, C.D., Hinks, D.G., Jorgensen, J.D. and Bader, S.D.. Phys. Rev. Lett. 77, (1996).Google Scholar
Mitchell, J.F., Argyriou, D.N., Potter, C.D., Hinks, D.G., Jorgensen, J.D. and Bader, S.D., Phys. Rev. B54, 6172 (1996).Google Scholar
11. Kwei, G.H., Lawson, A.C., Billinge, S.J.L., Neumeier, J.J., Argyriou, D.N. and Thomrson, J.D.. unpublished work (1996).Google Scholar
12. Billinge, S.J.L., DiFrancesco, R., Kwei, G.H., Neumeier, J.J. and Thompson, J.D.. Phys. Rev. Lett. 77, 715 (1996).Google Scholar
13. Booth, C.H., Bridges, F., Snyder, G.J. and Geballe, T.H., Phys. Rev. B54, R15606 (1996.Google Scholar
14. Morrish, A.H., Evans, B.J., Eaton, J.A. and Leung, L.K., Can. J. Phys. 47, 2691 (1969) andGoogle Scholar
Leung, L.K., Morrish, A.H. and Searle, C.W., Can. J. Phys. 2697 (1969).Google Scholar
15. Kwei, G.H., Subramanian, M.A. and Ramirez, A.P., unpublished work (1997).Google Scholar
16. Shimakawa, Y., Kubo, Y. and Manako, T., Nature 379, 53 (1996).Google Scholar
17. Subramanian, M.A., Toby, B.H., Ramirez, A.P., Sleight, A.W., Marshall, W.J. and Kwei, G.H., Science 273, 81 (1996).Google Scholar
18. Kwei, G.H., Booth, C.H., Bridges, F. and Subramanian, M.A., Phys. Rev. B 55, R688 (1997).Google Scholar
19. Elemans, J.B.A.A., van Laar, B., van der Veen, K.R. and Loopstra, B.O., J. Solid State Chem. 3, 238 (1971).Google Scholar
20. Kwei, G.H., Lawson, A.C. and Mostoller, M., Physica C175, 135 (1991).Google Scholar
21. Shiffer, P., Ramirez, A.P., Bao, W. and Cheong, S-W., Phys. Rev. Lett. 75, 3336 (1995).Google Scholar
22. Ramirez, A.P. and Subramanian, M.A., preprint (1997).Google Scholar