Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T05:37:56.532Z Has data issue: false hasContentIssue false

Lattice Dynamics and Thermodynamics of Bcc Vanadium at High Pressures

Published online by Cambridge University Press:  26 February 2011

Xianwei Sha
Affiliation:
[email protected], Carnegie Institution of Washington, 5251 Broad Branch Road, NW, Washington, DC, 20015, United States
R. E. Cohen
Affiliation:
[email protected], Carnegie Institution of Washington, 5251 Broad Branch Road, NW, Washington,, DC, 20015, United States
Get access

Abstract

We investigate the lattice dynamics and thermodynamics of nonmagnetic bcc vanadium as a function of temperature and pressure, using the first principles linear response linear-muffin-tin-orbital method. The calculated phonon density of states (DOS) show strong temperature dependence, different from inelastic neutron scattering measurements where the phonon DOS show little change from room temperature up to 1273 K. We obtain the Helmholtz free energy including both electronic and phonon contributions and calculate various equation of state properties such as the bulk modulus and the thermal expansion coefficient. A detailed comparison has been made with available experimental measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Colella, R. and Batterma, B. W., Phys. Rev. B 1, 3913 (1970).Google Scholar
2 Sears, V. F., Svensson, E. C., and Powell, B. M., Can. J. Phys. 73, 726 (1995).Google Scholar
3 Bogdanoff, P. D., Fultz, B., Robertson, J. L., and Crow, L., Phys. Rev. B 65, 014303 (2002).Google Scholar
4 Sha, X. W. and Cohen, R. E., Phys. Rev. B 73, 104303 (2006).Google Scholar
5 Wasserman, E., Stixrude, L., and Cohen, R. E., Phys. Rev. B 53, 8296 (1996).Google Scholar
6 Savrasov, S. Y. and Savrasov, D. Y., Phys. Rev. B 46, 12181 (1992).Google Scholar
7 Savrasov, S. Y., Phys. Rev. B 54, 16470 (1996).Google Scholar
8 Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
9 Cohen, R. E., Gulseren, O., and Hemley, R. J., Am. Miner. 85, 338 (2000).Google Scholar
10 Vinet, P., Ferrante, J., Rose, J. H., and Smith, J. R., J. Geophys. Res. 92, 9319 (1987).Google Scholar
11 Vinet, P., Rose, J. H., Ferrante, J., and Smith, J. R., J. Phys.-Condes. Matter 1, 1941 (1989).Google Scholar
12 Ming, L. C. and Manghnani, M. H., J. Appl. Phys. 49, 208 (1978).Google Scholar
13 Kenichi, T., in Proceedings of AIRAPT-17, Hyderabad, India, 2000, edited by Manghnani, M. H., Nellis, W. J. and Nicol, M. F. (Universities Press), p. 443.Google Scholar
14 Grigoriev, I. S. and Meilikhov, E. Z., Handbook of physical quantities (CRC Press, Boca Raton, Fla., 1997).Google Scholar