Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T10:56:28.876Z Has data issue: false hasContentIssue false

Lateral polarity heterostructures by overgrowth of patterned AlxGa1-xN nucleation layers

Published online by Cambridge University Press:  15 March 2011

R. Dimitrov
Affiliation:
School of Electrical Engineering, Cornell University, Ithaca, New York 14853, U.S.A.
V. Tilak
Affiliation:
School of Electrical Engineering, Cornell University, Ithaca, New York 14853, U.S.A.
M. Murphy
Affiliation:
School of Electrical Engineering, Cornell University, Ithaca, New York 14853, U.S.A.
W.J. Schaff
Affiliation:
School of Electrical Engineering, Cornell University, Ithaca, New York 14853, U.S.A.
L.F. Eastman
Affiliation:
School of Electrical Engineering, Cornell University, Ithaca, New York 14853, U.S.A.
A.P. Lima
Affiliation:
Walter Schottky Institute, TU Munich, Am Coulombwall, 85748 Garching, Germany
C. Miskysa
Affiliation:
Walter Schottky Institute, TU Munich, Am Coulombwall, 85748 Garching, Germany
O. Ambacher
Affiliation:
Walter Schottky Institute, TU Munich, Am Coulombwall, 85748 Garching, Germany
M. Stutzmann
Affiliation:
Walter Schottky Institute, TU Munich, Am Coulombwall, 85748 Garching, Germany
Get access

Abstract

In this study thin AlxGa1−xN nucleation layers on sapphire were patterned and overgrown by plasma-induced molecular beam epitaxy (PIMBE) and metalorganic chemical vapor deposition (MOCVD) to obtain adjacent regions of GaN and AlGaN/GaN heterostructures with different polarities. The role of polarity on the structural and electrical properties of epitaxial layers and AlGaN/GaN heterostructures was investigated for samples grown on patterned AlN or GaN nucleation layers. Epitaxial GaN and AlGaN/GaN heterostructures grown on Al-face AlN or N- face GaN nucleation layers were found to be Ga-face or N-face, respectively, independent of the technique used for the overgrowth.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bernardini, F., Fiorentini, V., and Vanderbilt, D., Phys. Rev. B 56, 10024 (1997).Google Scholar
2. Dimitrov, R., Mitchell, A., Wittmer, L., Ambacher, O., Stutzmann, M., Hilsenbeck, J., and Rieger, W., Jpn. J. Appl. Phys. 38, 4962 (1999).Google Scholar
3. Ambacher, O., Smart, J., Shealy, J.R., Weimann, N.G., Chu, K., Murphy, M., Schaff, W.J., Eastman, L.F., Dimitrov, R., Wittmer, L., Stutzmann, M., Rieger, W., and Hilsenbeck, J.: J. Appl. Phys. 85, 3222 (1999).Google Scholar
4. Kozodoy, P., Hansen, M., DenBaars, S., and Mishra, U. K., Appl. Phys. Lett. 74, 3681 (1999).Google Scholar
5. Ambacher, O., Foutz, B., Smart, J., Shealy, J. R., Weimann, N. G., Chu, K., Murphy, M., Sierakowski, A. J., Schaff, W. J., Eastman, L. F., Dimitrov, R., Mitchell, A., and Stutzmann, M., J. Appl. Phys. 87, 334 (2000).Google Scholar
6. Dimitrov, R., Murphy, M., Smart, J., Schaff, W., Shealy, J.R., Eastman, L. F., Ambacher, O., and Stutzmann, M., J. Appl. Phys. 87, 3375 (2000).Google Scholar
7. Dimitrov, R., Wittmer, L., Felsl, H. P., Mitchell, A., Ambacher, O., and Stutzmann, M., phys. stat. sol. (a) 168, R7 (1998).Google Scholar
8. Mileham, J.R., Pearton, S.J., Abernathy, C.R., MacKenzie, J.D., Shul, R.J., and Kilcoyne, S.P., J. Vac. Sci. Technol. A 14, 836 (1996).Google Scholar
9. Stocker, D.A., Schubert, E.F., and Redwing, J.M., Appl. Phys. Lett. 73, 2654 (1998).Google Scholar