Published online by Cambridge University Press: 21 February 2011
Several material properties and microstructural features can be determined or monitored by measuring ultrasonic velocity and/or ultrasonic attenuation. Conventional techniques which use piezoelectric transducers for generation and reception have several limitations, in particular in the case of materials at elevated temperature, of samples of complex shapes, and in regard to the detection bandwidth. These limitations are eliminated by laser-ultrasonics, a technique which uses lasers for generation and detection of ultrasound. Following a review of the various principles and methods used for generation and detection, we discuss the use of laserultrasonics for velocity and attenuation measurement. Examples of application to various materials are presented.