Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T13:28:15.743Z Has data issue: false hasContentIssue false

Laser-Induced Fluorescence Diagnostics of CF4/O2/H2 Plasma Etching*

Published online by Cambridge University Press:  15 February 2011

S. Pang
Affiliation:
Lincoln Laboratory, Massachusetts Insitute of Technology, Lexington, Massachusetts 02173
S. R. J. Brueck
Affiliation:
Lincoln Laboratory, Massachusetts Insitute of Technology, Lexington, Massachusetts 02173
Get access

Abstract

Laser-induced fluorescence experiments have been carried out during CF4/O2/H2 plasma etching of Si and SiO2. Measurements of relative CF2 radical concentrations as a function of rf power, frequency, pressure, and gas composition are reported. The results are correlated with etch rates of Si and SiO2. The balance between CF2 and F concentrations is shown to influence the etching process strongly.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This work was sponsored by the Department of the Air Force, in part with specific funding from the Air Force Office of Scientific Research.

References

REFERENCES

1. Coburn, J. W., Plasma Chemistry and Plasma Processing 2, 1 (1982).Google Scholar
2. Flamm, D. L. and Donnelly, V. M., Plasma Chemistry and Plasma Processing, 1, 315 (1981).Google Scholar
3. Degenkolb, E. O. and Griffiths, J. E., Appl. Spectrosc. 31, 40 (1977).Google Scholar
4. Hirobe, K. and Tsuchimoto, T., J. Electrochem. Soc. 127, 234 (1980).Google Scholar
5. Harshbarger, W. R., Porter, R. A., Miller, T. A., and Norton, P., Appl. Spectrosc. 31, 201 (1977).Google Scholar
6. Greene, J. E., J. Vac. Sci. Technol. 15, 1718 (1978).CrossRefGoogle Scholar
7. Smolinsky, G. and Vasile, M. J., Int. J. Mass. Spectrom. Ion Phys. 16, 137 (1975).Google Scholar
8. Smith, D. L. and Bruce, R. H., J. Electrochem. Soc. 129, 2045 (1982).Google Scholar
9. Thornton, J. A., J. Vac. Sci. Technol. 15, 188 (1978).Google Scholar
10. Steinbruchel, C. H., presented at the Electrochem. Soc. Meeting in Detroit, recent news paper 361 (1982).Google Scholar
11. Hargis, P. J. Jr. and Kushner, M. J., Appl. Phys. Lett. 40, 779 (1982).CrossRefGoogle Scholar
12. Gottscho, R. A., Smolinsky, G., and Burton, R. H., J. Appl. Phys. 53, 5908 (1982).Google Scholar
13. Donnelly, V. M., Flamm, D. L., and Collins, G., J. Vac. Sci. Technol. 21, 817 (1982).Google Scholar
14. Mogab, C. J., Adams, A. C., and Flamm, D. L., J. Appl. Phys. 49, 3796 (1978).Google Scholar
15. Ephrath, L. M.. J. Electrochem. Soc. 124, 2846 (1977).Google Scholar
16. Millard, M. M. and Kay, E., J. Electrochem. Soc. 129, 160 (1982).Google Scholar
17. Flamm, D. L., Solid State Tech. 22, 109 (April, 1979).Google Scholar
18. Winters, H. F., Coburn, J. W., and Kay, E., J. Appl. Phys. 48, 4973 (1977).Google Scholar
19. King, D. S., Schenck, P. K., and Stephenson, J. C., J. Mol. Spectrosc. 78, 1 (1979).Google Scholar
20. Chapman, B. N., Glow Discharge Process, Wiley, New York, 1980.Google Scholar