Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T07:31:58.908Z Has data issue: false hasContentIssue false

Laser-Induced Deposition of Gold Micropatterns from Metallopolymer Thin Films: A Photochemical Approach

Published online by Cambridge University Press:  28 February 2011

V. H. Houlding
Affiliation:
Corporate Technology, Allied-Signal Corporation, P.O Box 1021R, Morristown, New Jersey 07960
N. S. Clements
Affiliation:
Corporate Technology, Allied-Signal Corporation, P.O Box 1021R, Morristown, New Jersey 07960
K. W. Beeson
Affiliation:
Corporate Technology, Allied-Signal Corporation, P.O Box 1021R, Morristown, New Jersey 07960
G. A. West
Affiliation:
Corporate Technology, Allied-Signal Corporation, P.O Box 1021R, Morristown, New Jersey 07960
Get access

Abstract

The deep ultraviolet (250 nm) photopatterning of spin-on films of polymeric Au mercaptide results in formation of adherent Au patterns. Fxcimer laser projection patterning and standard contact printing techniques give excellent pattern resolution on the micron scale. Laser direct write produces lines at very fast writing speeds. Exposed areas are less soluble than unexposed areas, i.e. the film behaves as a negative photoresist. Bakeout of developed patterns at 250°C yields good purity Au micropatterns up to 500 Å thick. Mechanistic information about pattern formation is gained from uv-visible, infrared, and mass spectrometric monitoring of the photolysis process, and from Auger analysis of films. Adherent patterns are apparently formed by photochemical cleavage of Au-S bonds followed by evaporation of a small amount of free mercaptide. The loss of ligand in the exposed areas renders them less soluble than unexposed film. Thermal decomposition of both photolyzed and unphotolyzed films has the same result of volatilizing all film material except Au.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ehrlich, D.J. and Tsao, J.Y., J. Vac. Sci. Technol. B 1, 969 (1983).Google Scholar
2. von Gutfeld, R.J., in Laser Applications, vol.5, Ready, J.F. and Erf, R.K., eds., Academic Press, NY, 1984, p.1.Google Scholar
3. Yardley, J.T., in Laser Handbook, Bass, M. and Stich, M.L, eds., Elsevier Science Publishers, NY, 1985, p. 405.Google Scholar
4. Heiblum, M., Nathan, M.I., and Chang, C.A., Sol. State Electonics 25, 185 (1982) and references therein.Google Scholar
5. Baum, T.H. and Jones, C.R., Appl. Phys. Lett. 47, 538 (1985).Google Scholar
6. Aylett, M. and Haigh, J., Extended Abstracts, “Beam-Induced Chemical Processes” MRS Meeting, Dec. 1985, p.63.Google Scholar
7. Micheels, R.H., Darrow, A.D., and Rauh, R.D., Appl. Phys. Lett. 39, 418 (1981).Google Scholar
8. Karlicek, R.F., Donnelly, V.M., and Collins, G.J., J. Appl. Phys. 53, 1084 (1982).Google Scholar
9. Tamir, S. and Zahavi, J., J. Vac. Sci. Technol. A 3, 2312 (1985).Google Scholar
10. Jan, R.Y. and Allen, S.D., Proc. SPIE 459, “Laser Assisted Deposition, Etching, and Doping” SPIE, 1984, p. 71.Google Scholar
11. Fisanik, G.J., Gross, M.E., Hopkins, J.B., Fennell, M.D., Schnoes, K.J., and Katzir, A., J. Appl. Phys. 57, 1139 (1985).Google Scholar
12. Fisanik, G.J., Hopkins, J.B., Gross, M.E., Fennell, M.D., and Schnoes, K.J., Appl. Phys. Lett. 46, 1184 (1985).Google Scholar
13. Gross, M.E., Fisanik, G.J., Gallagher, P.K., Schnoes, K.J., and Fennell, M.D., Appl. Phys. Lett. 47, 923 (1985).Google Scholar
14. Gross, M.E., Appelbaum, A., and Schnoes, F.J., J. Appl. Phys. 60, 529 (1986).Google Scholar
15. Houlding, V.H., Slattery, N.J., and Beeson, K.W., Extended Abstracts, “Beam-Induced Chemical Processes”, MRS Meeting, Dec. 1985, p. 25.Google Scholar
16. Clements, N.S., Houlding, V.H., and Beeson, K.W., submitted to Appl. Phys. Lett. December 1986.Google Scholar
17. Simmons, E.L., J. Phys. Chem. 75, 588 (1971).Google Scholar
18. Values are typical of Au(I) nonaromatic mercaptides synthesized according to Fitch, H.M., U.S. Patent nos. 2,994,614, 3,163,665, and 3,268,568.Google Scholar
19. McAuliffe, C.A., Parrish, R.V., and Randall, P.D., J. Chem. Soc. Dalton 1979, 1730 (1979).Google Scholar