Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-19T22:53:18.825Z Has data issue: false hasContentIssue false

Laser-Induced Crystallization of Silicon on Bulk Amorphous Substrates: An Overview

Published online by Cambridge University Press:  15 February 2011

D. K. Biegelsen
Affiliation:
Xerox Palo Alto Research Centers, Palo Alto, CA 94304
N. M. Johnson
Affiliation:
Xerox Palo Alto Research Centers, Palo Alto, CA 94304
W. G. Hawkins
Affiliation:
Xerox Palo Alto Research Centers, Palo Alto, CA 94304
L. E. Fennell
Affiliation:
Xerox Palo Alto Research Centers, Palo Alto, CA 94304
M. D. Moyer
Affiliation:
Xerox Palo Alto Research Centers, Palo Alto, CA 94304
Get access

Abstract

In this paper we review the current understanding of laser-induced silicon thin film crystal growth on bulk amorphous substrates. We propose a model for oriented nucleation and show that the silicon reflectivity jump on melting coupled with radiant heating lead naturally to this autonucleation mechanism. We then survey various techniques for control of lateral epitaxial growth and conclude with the results of some recent electrical device characterization.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Permanent address: Xerox, Webster Research Center, Webster, NY 14580

References

REFERENCES

1.Bösch, M. A. and Lemons, R. A., Phys. Rev. Letters 47, 1151 (1981).Google Scholar
2.Hawkins, W. G. and Biegelsen, D. K. (submitted for publication).Google Scholar
3.Holloman, J. H. and Turnbull, D., Prog. in Metal Phys. 4, 333 (1953).Google Scholar
4.Moody, J. E. and Hendel, R. H., J. Appl. Phys. 53, 4364 (1982); andGoogle Scholar
Michael Geis, private communication.Google Scholar
5.Tiller, W. A., Art and Science of Growing Crystals, Gilman, J. J., ed. (John Wiley, New York, 1964) p. 276.Google Scholar
6.Tiller, W. A., private communication.Google Scholar
7.Tiller, W. A., Science 146, 871 (1964).Google Scholar
8.Biegelsen, D. K., Johnson, N. M., Bartelink, D. J. and Moyer, M. D., Appl. Phys. Letters 38, 150 (1981);Google Scholar
Kawamura, S., Sakurai, J., Nakano, M. and Takagi, M., Appl. Phys. Letters 40, 394 (1981).Google Scholar
9.Biegelsen, D. K., Johnson, N. M., Bartelink, D. J. and Moyer, M. D., in Laser and E-Beam Solid Interactions, Gibbons, J., Hess, L. and Sigmon, T., eds. (North Holland, New York, 1980), p. 487.Google Scholar
10.Stultz, T. J. and Gibbons, J. F., Appl. Phys. Letters 39, 6 (1981).Google Scholar
11.Johnson, N. M., Biegelsen, D. K. and Moyer, M. D., ref. 9, p. 463.Google Scholar
12.van Bladel, J., Electromagnetic Fields, (McGraw-Hill, New York, 1964), p. 410.Google Scholar
13.Johnson, N. M., Biegelsen, D. K. and Moyer, M. D., Appl. Phys. Letters 38, 900 (1981).Google Scholar
14.Tsaur, B./Y., Fan, J. C. C. and Geis, M. W., Appl. Phys. Letters 40, 322 (1982).Google Scholar
15.Lyon, S. A., Nemanich, R. J., Johnson, N. M. and Biegelsen, D. K., Appl. Phys. Letters 40, 316 (1982).Google Scholar
16.Johnson, N. M., Biegelsen, D. K., Tuan, H. C., Moyer, M. D. and Fennell, L. E., Electron Device Letters (in press).Google Scholar
17.Johnson, N. M., Biegelsen, D. K., Fennell, L. E., Moyer, M. D., Thompson, M. J., Tuan, H. C., Chiang, A., these proceedings.Google Scholar
18. For example, Lemons, R. A., Bösch, M. A., Dayem, A. H., Grogan, J. K. and Mankiewich, P. M., Appi. Phys. Letters 40, 469 (1982).Google Scholar