Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T02:20:29.866Z Has data issue: false hasContentIssue false

Laser Spectroscopic Investigation of Gas-Phase Processes Relevant to Semiconductor Device Fabrication

Published online by Cambridge University Press:  15 February 2011

R. F. Karlicek Jr.
Affiliation:
Bell Laboratories, Murray Hill, New Jersey 07974
V. M. Donnelly
Affiliation:
Bell Laboratories, Murray Hill, New Jersey 07974
W. D. Johnston Jr.
Affiliation:
Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

Chemical vapor deposition (CVD) and plasma etching are important gas-phase techniques used in fabricating semiconductor devices. These processes frequently involve poorly understood multicomponent gas-phase reactions which control reproducibility and product quality. Laser spectroscopic techniques have recently been developed to investigate CVD and plasma etching. These methods offer several advantages for probing complex systems. A comparison of various probing techniques will be presented, and recent results of laser spectroscopic investigations of plasma etching and CVD of silicon and III-V compounds will be reviewed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Markoux, P. J., Foo, P. D., Solid State Technology 24, 115, (1981).Google Scholar
2. Yokoyama, S., Hirose, M., and Osaka, Y., Japan. J. Appl. Phys. 20, 241 (1981).Google Scholar
3. Trolinger, J. and Moore, W. W., Eds., Advances in Laser Technology for the Atomospheric Sciences, Proceedings of the Society of Photo–Optical Instrumentation Engineers, v. 125, 1977.Google Scholar
4. Smith, J. R. in: Laser Probes for Combustion Chemistry, Crosley, D. R., Ed., (American Chemical Society, Washington, DC 1980), p. 259.Google Scholar
5. Donnelly, V. M., Karlicek, R. F., J. Appl. Phys. 53, 6399 (1982).Google Scholar
6. Omenetto, N., Ed., Analytical Laser Spectroscopy, (John Wiley and Sons, New York 1979).Google Scholar
7. Huber, K. P. and Herzberg, G., Molecular Spectra and Molecular Structure IV, (Van Nostrand, New York 1979).Google Scholar
8. Stern, O. and Volmer, M., Pysik. Z. 20, 183 (1919).Google Scholar
9. Lapp, M. and Penny, C. M., Eds., Laser Raman Gas Diagnostics, (Plenum Press, New York 1979).Google Scholar
10. Smith, J. E. Jr., and Sedgwick, T. O., Letters in Heat and Mass Transfer 2, 329 (1975).Google Scholar
11. Sedgwick, T. O., Smith, J. E. Jr., Ghez, R., and Cowher, M. E., J. Cryst. Growth 31, 264 (1975).CrossRefGoogle Scholar
12. Smith, J. E. Jr., and Sedgwick, T. O., Thin Solid Films 40, 1 (1977).Google Scholar
13. Miller, G. H., Mulac, A. J., and Hargis, P. J. Jr., NBS Special Publication #561, 1979, p. 1135.Google Scholar
14. Miller, T. A., Plasma Chemistry and Plasma Processing 1, 3 (1981).Google Scholar
15. Donnelly, V. M., Flamm, D. L., and Collins, G., J. Vac. Sci. Technol., to be published.Google Scholar
16. Gottscho, R. A., Davis, G. P., and Burton, R. H., J. Vac. Sci. Technol., (Proceedings of the American Vacuum Society Meeting, 11/16-19/82, Baltimore,abstract #EMTA-20), to be published.Google Scholar
17. Hargis, P. J. Jr. and Kushner, M. J., Appl. Phys. Lett. 40, 779 (1982).Google Scholar