Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-05T09:08:30.207Z Has data issue: false hasContentIssue false

Laser Quality AlGaAs-GaAs Quantum Wells Grown on Low Temperature GaAs

Published online by Cambridge University Press:  15 February 2011

Y. Hwang
Affiliation:
Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695-7911
D. Zhang
Affiliation:
Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695-7911
T. Zhang
Affiliation:
Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695-7911
M. Mytych
Affiliation:
Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695-7911
R. M. Kolbas
Affiliation:
Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695-7911
Get access

Abstract

In this work we demonstrate that photopumped quantum wellheterostructure lasers with excellent optical quality can be grown ontop of a LT GaAs buffer layer by molecular beam epitaxy. Hightemperature thermal annealing of these lasers blue-shifts the laseremission wavelengths but the presence/absence of a LT GaAs layerhad little effect on the overall laser thresholds. Also, to first order itwas not necessary to include an AlAs barrier layer to preventadverse effects (as has been necessary in the gate stack of MESFETs to prevent carrier compensation).

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Smith, F.W., Calawa, A.R., Chen, C.L., Manfra, M.J., and Mahoney, L.J., IEEE Electron Device Lett., Vol.9, pp. 7780 (Feb.1988).Google Scholar
2.Kaminska, M., Liliental-Weber, Z., Weber, E.R.. George, T., Kortright, J.B., Smith, F.W., Tsaur, B.Y., and Calawa, A.R., Appl. Phys. Lett. Vol.54, No. 19. pp. 18811883 (1989).Google Scholar
3.Yin, L.W. et al., IEE Electron Device lett., Vol.11, pp. 561563 (Dec. 1990).Google Scholar
4.Smith, F.W., Calawa, A.R., Chen, C.L., Manfra, M.J., and Huang, J., in Proc. IEEE/Cornell Conf. on High Speed Semiconductor Devices and Circuits, pp. 229238 (Ithaca, NY, 1987).Google Scholar
5.Melloch, M.R., Miller, D.C., and Das, B., Appl. Phys. Lett., Vol.54, No. 10, pp. 943945 (1989).Google Scholar
6.Warren, A.C. et al., IEEE Electron Device Lett., Vol.12, No. 10, pp. 527529 (Oct. 1991).Google Scholar
7.Morse, J.D., Morrella, R.P., and Dutton, R.W., IEEE IEDM Technical Digest, pp. 721722 (Washington D.C. 1989).Google Scholar
8.Hwang, Y., Yin, W.L., Lee, J.H., Zhang, T., Kolbas, R.M., and Mishra, U.K., presented at the 1990 Electronic Materials Conference, Santa Barbara, June 1990.Google Scholar
9.Deppe, D.G. and Holonyak, N. Jr., J. Appl. Phys., Vol.64, No. 12, pp. R93–r113 (1988).Google Scholar
10.Hsieh, K.Y., Lo, Y.C., Lee, J.H., and Kolbas, R.M., 1988 Int. Symp. GaAs and Related Compounds, Atlanta, Georgia (Inst. Phys. Conf. Ser. No. 96, pp. 393396).Google Scholar
11.Hwang, Y., Hsieh, K.Y., Lee, J.H., Zhang, T., Mishra, U.K., and Kolbas, R.M., in Proc. 6th Conf. on Semi-insulating III-V Materials, pp. 7782 (Torolnto, Canada, 1990).Google Scholar