Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T07:48:54.051Z Has data issue: false hasContentIssue false

Laser Pulse Triggering of the Explosive Crystallization in Amorphous Si and Ge Thin Films

Published online by Cambridge University Press:  25 February 2011

W. Marine
Affiliation:
Groupe de Physique des Etats Condensés, U.A. CNRS 783, - Département de Physique, - Faculté des Sciences de Luminy, - Case 901, - 13288 Marseille Cedex 9, - France
J. Marfaing
Affiliation:
Groupe de Physique des Etats Condensés, U.A. CNRS 783, - Département de Physique, - Faculté des Sciences de Luminy, - Case 901, - 13288 Marseille Cedex 9, - France
Get access

Abstract

The structure and morphologies of the thin amorphous a-Si and oc-Ge films crystallized “in situ” in an electronic microscope by pulsed YAG laser have been studied using conventional and high-resolution transmission electronic microscopy observations. It is found that the laser induced nucleation rate (I) is laser pulse length dependent. I is about 1021-1022 cm−3 s−1 (α-Si) and 1023-1025 cm−3 s−1 (α-Ge) near the melting point. Explosive dendritic formation is the result of competition between solid state light induced nucleation and melting mediated explosive growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Thompson, M.O., Galvin, GJ., Mayer, J.M, Peercy, P.S., Poate, J.M., Jacobson, D.C., Cullis, A.G. and Chew, H.G., Phys. Rev. Lett. 52, 2360 (1984).Google Scholar
2 Murakami, K., Eryu, O., Tokita, K. and Masuda, K., Phys. Rev. Lett. 52, 2203 (1987).Google Scholar
3 Lowndes, D.H., Pennycook, S.J., Jellison, G.E. Jr. Withrow, S.P. and Mashburn, D.H., J. Mater. Res. 2, 648 (1987).Google Scholar
4 Wood, R.F. and Geirt, G.A., Phys. Rev. Lett. 57, 873 (1986).Google Scholar
5 Tsao, J.Y. and Peercy, P.S., Phys. Rev. Lett. 58, 2782 (1987).Google Scholar
6 Roorda, S. and Sinke, W.C., Appl. Surf. Sci. 36, 188 (1989).Google Scholar
7 Fontaine, P., Marfaing, J., Marine, W. and Salvan, F., in “Laser Processing and Diagnostics”, p. 19, ed. by Bauerle, D., Spring-Verlag 1984.Google Scholar
8 Seager, C.H. and Lenahan, P.M., J. Appl. Phys. 58, 2709 (1985).Google Scholar
9 Donovan, E.P., Spaepen, F., Turnbull, D., Poate, J.M. and Jacobson, D.C., J. Appl. Phys. 57, 1795 (1985).Google Scholar
10 Andrà, G., Geiler, H.G., Götz, G., Heinig, K.H. and Woittennek, H., Phys. Stat. Sol.(a) 74, 511 (1982).Google Scholar
11 Bostanjoglo, O. and Endruschat, E., Phys. Stat. Sol.(a) 91, 17 (1985).Google Scholar
12 Scotto, J.M., Marfaing, J. and Marine, W., unpublished.Google Scholar
13 Germain, P., Zellama, K., Squelard, S., Bourgouin, J.C. and Gheorghiu, A., J. Appl. Phys. 50(1), 6986 (1979).Google Scholar
14 Stiffler, S.R. and Thompson, M.O., Phys. Rev. Lett. 60, 2519 (1988).Google Scholar
15 Wood, R.F., Lowndes, D.H. and Narayan, J., Appl. Phys. Lett. 44, 770 (1984).Google Scholar
Christian, J.W. in “Transformations in Metals and Alloys”, ed. by Pergamon Press (1981).Google Scholar