Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T08:50:32.667Z Has data issue: false hasContentIssue false

Laser Microfabrication Technology and its Application to High Speed Interconnect of Gate Arrays

Published online by Cambridge University Press:  28 February 2011

Anthony F. Bernhardt
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
Bruce M. McWilliams
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
Fred Mitlitsky
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
John C. Whitehead
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
Get access

Abstract

Nickel and doped polysilicon lines can be written at speeds exceeding 1000 microns/sec using laser direct-write deposition. We explore the roles of gas pressure, composition, and laser power in determining writing speed and line morphology. The use of a surface layer of amorphous silicon provides optical absorption, thermal and electrical insulation which help to maintain high, relatively stable, surface temperature.

Laser direct-write deposition is used to interconnect CMOS gate arrays by means of computer controlled laser pantography. Complex circuits, such as an array of five 16-stage shift registers and one 16-stage counter have been successfully fabricated and tested.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. a. Mitlitsky, F., Whitehead, J. C., Bernhardt, A. F., and McWilliams, B. M. in The Physics and Fabrication of Microstructures and Microdevices, Gate Array Interconnect Structures Using Direct-Write Deposition Processes, Kelly, M. J. and Weisbuch, C., Editors, Springer Verlag 1986, pp 443452.Google Scholar
b. Whitehead, J. C., Mitlitsky, F., Ashkenas, D. J., Bernhardt, A. F., Farmwald, S. E., Kaschmitter, J. L., and McWilliams, B. M., SPIE Vol.621 Manufacturing Applications of Lasers (1986) pp. 6270.Google Scholar
2. Osgood, a. R. M. Jr., Ann. Rev. Phys. Chem. 34, 77 (1983).Google Scholar
b. Ehrlich, D. J. and Tsao, J. Y., J. Vac. Sci. Technol. B1, 969 (1983).CrossRefGoogle Scholar
3. Herman, I. P., McWilliams, B. M., Mitlitsky, F., Chin, H. W., Hyde, R. A., and Wood, L. L., in Materials Research Society Symposia Proceedings 17, Laser Diagnostics and Photochemical Processing for Semiconductor Devices, Osgood, R. M., Brueck, S. R., and Schlossberg, H. R., Editors, Elsevier Science Publishing Co. 1983, pp 918.Google Scholar
4. Ehrlich, D. J. and Tsao, J. Y., Appl. Phys. Lett. 44, 267 (1984).CrossRefGoogle Scholar
5. Bauerle, D., Irsiglez, P., Leyendecker, G., Noll, H., and Wagner, D., Appl. Phys. Lett 40, 819 (1982), D. Bauerle, in Laser Processing and Diagnostics, D. Bauerle, Editor, Springer Verlag 1984, pp. 166–182.Google Scholar
6. Gau, S. C., Weinberger, B. R., Akhtar, M., Kiss, Z., and MacDiarmid, A. G., Appl. Phys. Lett 39, 436 (1981).Google Scholar
7. Hardy, S. C., J. Cryst. Growth 69, 456 (1984).Google Scholar