Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-09T05:23:30.251Z Has data issue: false hasContentIssue false

Laser Endotaxy and PIN Diode Fabrication of Silicon Carbide

Published online by Cambridge University Press:  01 February 2011

Zhaoxu Tian
Affiliation:
[email protected], University of Central Florida, College of Optics and Photonics/CREOL, 4000 Central Florida Blvd. Bldg. 53, Orlando, FL, 32816, United States, 407-823-6847, 407-823-6880
Nathaniel R Quick
Affiliation:
[email protected], AppliCote Associates, LLC, 1445 Dolgner Pl, Sanford, FL, 32771, United States
Aravinda Kar
Affiliation:
[email protected], University of Central Florida, College of Optics and Photonics, 4000 Central Florida Blvd. Bldg. 53, Orlando, FL, 32816, United States
Get access

Abstract

A laser solid phase diffusion technique has been utilized to fabricate endolayers in n-type 6H-SiC substrates by carbon incorporation. X-ray energy dispersive spectrometry (XEDS) analysis showed that the thickness of endolayer is about 100 nm. High resolution transmission electron microscopy (HREM) images indicate that the laser endotaxy process maintains the crystalline integrity of the substrate without any amorphization. The resistivity of the endolayer was 1.1 ¡Á105 •cm and 9.4 ¡Á104 •cm after annealing at 1000C for 10 min. These resistivities provide device isolation for many applications. The silicon carbide endolayer was doped with aluminum using a laser doping technique to create p-region on the top surface of the endolayer in order to fabricate PIN diodes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Boulmer, J., Dragnea, B., Guedj, C., Debarre, D., Bosseboeuf, A., Finkman, E. and Bourguignon, B., Proceedings of the SPIE, 3404, 149158 (1998).Google Scholar
2 Kramer, K.M. and Thompson, M.O., J Appl. Phys. 79, 4118 (1996).Google Scholar
3 Solanki, R., Sudarsan, U. and Johnson, J.C., Appl. Phys. Lett. 52, 919 (1988).Google Scholar
4 Scace, R. I. and Slack, G. A., J. phys. Chem. 30, 1551 (1959).Google Scholar
5 Tian, Z., Quick, N.R. and Kar, A., Submitted to J. Electron. Mater.Google Scholar
6 Sharma, P. K., Rapp, D. and Rahotgi, N. K., (presented at In Situ Resource Utilization (ISRU III) Technical Interchange Meeting, Denver, CO, 11-12 February 1999).Google Scholar
7 Speight, J. G., Perry's Standard Tables and Formulas for Chemical Engineers, (New York: McGRAW-HILL, 2003), p. 33.Google Scholar
8 Lipp, S., Frey, L., Lehrer, C., Frank, B., Demm, E. and Ryssel, H., J. Vac. Sci. Technol. B14, 3996 (1996).Google Scholar
9 Kempshall, B.W., Giannuzzi, L.A., Prenitzer, B.I., Stevie, F.A. and Da, S.X., J. Vac. Sci. Technol. B20, 286 (2002).Google Scholar
10 Nadella, R.K, and Capano, M.A., Appl. Phys. Lett. 70, 886 (1997).Google Scholar
11 Edwards, A., Dwight, D.N., Rao, M.V., Ridgway, M.C., Kelner, G. and Papanicolaou, N., J.Appl. Phys. 82, 4223 (1997).Google Scholar
12 Zetterling, Carl-Mikael, Process Technology for Silicon Carbide Devices, (London: INSPEC, the Institution of Electrical Engineers, 2002), P.75.Google Scholar
13 Hong, J. D. and Davis, R. F., J. Am. Ceram. Soc. 63, 546 (1980).Google Scholar
14 Singh, R., Irvine, K. G., Capell, D. C., Richmond, J. T., Berning, D., Hefner, A. R. and Palmour, J. W., IEEE Trans.Electron Dev. 49, 2308 (2002).Google Scholar