Article contents
Laser Encapsulation of Metallic Films in SiO2
Published online by Cambridge University Press: 15 February 2011
Abstract
Thin films of gold, copper and iron deposited on silica were driven into the substrate by a laser pulse. This transport takes place only when the irradiation is performed at a laser energy density of 0.7 J/cm2 or lower. Cross sectional transmission electron microscopy (TEM) of the irradiated specimens reveals two distinctive stages in the encapsulation process. In the first, the film melts and clusters into small particles and in the second one the particles are driven into the substrate by the laser pulse. The particle size of encapsulated metal varies from 5 to 50 nm. Selected area diffraction of the large particles and lattice fringe images of the smaller particles reveal pure metals, e.g., gold, copper or iron. Titanium films laser irradiated are not encapsulated in silica; instead, these films react with silica forming an amorphous compound. Apparently, one of the conditions required for encapsulation is that the metal should not react with the substrate material. On subsequent irradiation at a laser energy density of 1.5 J/cm2, ablation of silica partially exposes the metallic particles. Strong bonding between a new film deposited after irradiation and the substrate is obtained because these particles anchor the freshly deposited film. Anchoring is clearly revealed by cross sectional TEM. The mechanisms of encapsulation are discussed using results from TEM and adhesion testing.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1996
References
REFERENCES
- 1
- Cited by