Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-17T17:18:57.932Z Has data issue: false hasContentIssue false

Laser Diagnostics of Microelectronics Fabrication Processes

Published online by Cambridge University Press:  22 February 2011

J. Wormhoudt
Affiliation:
Aerodyne Research, Inc., 45 Manning Road, Billerica, MA 01821
K. McCurdy
Affiliation:
Aerodyne Research, Inc., 45 Manning Road, Billerica, MA 01821
A. Freedman
Affiliation:
Aerodyne Research, Inc., 45 Manning Road, Billerica, MA 01821
Get access

Abstract

Laser diagnostics, including long path infrared diode laser absorption and dye laser induced fluorescence, are able to provide microscopic information on the gas phase of such important semiconductor fabrication processes as plasma etching and plasma enhanced deposition. It is possible to measure temperatures, concentration profiles, and absolute concentrations if independent laboratory measurements of quantitative spectroscopic parameters have been made. Infrared band strength measurements on several molecular radicals important in semiconductor processing systems are described. We also describe a new apparatus which allows multipass absorption and laser induced fluorescence diagnostics of a large volume of plasma.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ryan, K.R. and Plumb, I.C., Plasma Chemistry and Plasma Processing, 6, 231 (1986).CrossRefGoogle Scholar
2. Plumb, I.C. and Ryan, K.R., Plasma Chemistry and Plasma Processing, 6, 205 (1986).Google Scholar
3. d'Agostino, R., Cramarossa, F., Colaprico, V., and d'Ettole, R., J. Appl. Phys. 54, 1284 (1988).CrossRefGoogle Scholar
4. d'Agostino, R., DeBenedictis, S., and Cramarossa, F., Plasma Chemistry and Plasma Processing 4, 1 (1984).CrossRefGoogle Scholar
5. Haa, J.S., J. Vac. Sci. Technol. B 5, 657 (1987).Google Scholar
6. King, D.S., Schenck, P.K., and Stephenson, J.C., J. Mol. Spec. 78, 1 (1979).Google Scholar
7. Sharpe, S., Hartnett, B., Sethi, H.S., and Sethi, D.S., J. Photochem. 38, 1 (1987).Google Scholar
8. Orlando, J.J., Reid, J., and Smith, D.R., Chem. Phys. 68, 148 (1984).Google Scholar
9. Newton, J.H. and Person, W.B., J. Chem. Phys. 68, 2794 (1978).Google Scholar
10. Kuech, T.F. and Veuhoff, E., J. Cryst. Growth 68, 148 (1984).Google Scholar
11. Arens, G., Luth, H., Heyen, M. and Balk, P., Thin Solid Films 136, 281 (1986).Google Scholar
12. Matsumoto, S., Sato, Y., Tsutsumi, M., and Setaka, N., J. Mat. Sci. 17, 3106 (1982).Google Scholar
13. Stinespring, C. D and Wormhoudt, J.C., J. Crystal Growth, in the press.Google Scholar
14. Butler, J.E., Bottka, N., Sillmon, R.S. and Gaskill, D.K., J. Crystal Growth 77, 163 (1986).Google Scholar
15. Yamada, C., Hirota, E., and Kawaguchi, K., J. Chem. Phys. 75, 5256 (1981).Google Scholar
16. Yamada, C., and Hirota, E., J. Chem. Phys. 78, 669 (1983).Google Scholar
17. Tsang, W. and Hampson, R.F., J. Phys. Chem. Ref. Data 15, 1087 (1986).Google Scholar
18. Zahniser, M.S. and Stanton, A.C., J. Chem. Phys. 80, 4951 (1984).Google Scholar