Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-09T20:37:05.420Z Has data issue: false hasContentIssue false

Laser cleaning of exfoliated graphene

Published online by Cambridge University Press:  20 July 2012

Oliver Ochedowski
Affiliation:
Fakultät für Physik and CeNIDE, Universität Duisburg-Essen, D-47048 Duisburg, Germany
Benedict Kleine Bußmann
Affiliation:
Fakultät für Physik and CeNIDE, Universität Duisburg-Essen, D-47048 Duisburg, Germany
Marika Schleberger
Affiliation:
Fakultät für Physik and CeNIDE, Universität Duisburg-Essen, D-47048 Duisburg, Germany
Get access

Abstract

We have employed atomic force and Kelvin-Probe force microscopy to study graphene sheets exfoliated on TiO2 under the influence of local heating achieved by laser irradiation. Exfoliation and irradiation took place under ambient conditions, the measurements were performed in ultra high vacuum. We show that after irradiation times of 6 min, an increase of the surface potential is observed which indicates a decrease of p-type carrier concentration. We attribute this effect to the removal of adsorbates like water and oxygen. After irradiation times of 12 min our topography images reveal severe structural modifications of graphene. These resemble the nanocrystallite network which form on graphene/SiO2 but after much longer irradiation times. From our results we propose that short laser heating at moderate powers might offer a way to clean graphene without inducing unwanted structural modifications.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]. Novoselov, K. S.. Science, 306(5696):666669, 2004.10.1126/science.1102896Google Scholar
[2]. Morozov, S., Novoselov, K., Katsnelson, M., Schedin, F., Elias, D., Jaszczak, J., and Geim, A.. Physical Review Letters, 100(1), 2008.Google Scholar
[3]. Kim, K., Choi, J.-Y., Kim, T., Cho, S.-H., and Chung, H.-J.. Nature, 479(7373):338344, 2011.10.1038/nature10680Google Scholar
[4]. Ishigami, M., Chen, J. H., Cullen, W. G., Fuhrer, M. S., and Williams, E. D.. Nano Letters, 7(6):16431648, 2007.10.1021/nl070613aGoogle Scholar
[5]. Lin, Y.-C., Lu, C.-C., Yeh, C.-H., Jin, C., Suenaga, K., and Chiu, P.-W.. Nano Letters, 12(1):414419, 2012.10.1021/nl203733rGoogle Scholar
[6]. Krauss, B., Lohmann, T., Chae, D.-H, Haluska, M., von Klitzing, K., and Smet, J.. Physical Review B, 79(16), 2009.10.1103/PhysRevB.79.165428Google Scholar
[7]. Nonnenmacher, M., O’Boyle, M. P., and Wickramasinghe, H. K.. Applied Physics Letters, 58(25):2921, 1991.10.1063/1.105227Google Scholar
[8]. Filleter, T., Emtsev, K. V., Seyller, Th., and Bennewitz, R.. Applied Physics Letters, 93(13):133117, 2008.10.1063/1.2993341Google Scholar
[9]. Lee, N. J., Yoo, J. W., Choi, Y. J., Kang, C. J., Jeon, D. Y., Kim, D. C., Seo, S., and Chung, H. J.. Applied Physics Letters, 95(22):222107, 2009.10.1063/1.3269597Google Scholar
[10]. Kleine Bussmann, B., Ochedowski, O., and Schleberger, M.. Nanotechnology, 22(26):265703, 2011.10.1088/0957-4484/22/26/265703Google Scholar
[11]. Shim, J., Hung Lui, C., Yeoung Ko, T., Yu, Y.-J., Kim, P., Heinz, T. F., and Ryu, S.. Nano Letters, 12(2):648654, 2012.10.1021/nl2034317Google Scholar
[12]. Novoselov, K. S.. Proceedings of the National Academy of Sciences, 102(30):1045110453, 2005.10.1073/pnas.0502848102Google Scholar
[13]. Bukowska, H., Meinerzhagen, F., Akcöltekin, S., Ochedowski, O., Neubert, M., Buck, V., and Schleberger, M.. New Journal of Physics, 13(6):063018, 2011.10.1088/1367-2630/13/6/063018Google Scholar
[14]. Cao, P., Xu, K., Varghese, J. O., and Heath, J. R.. Nano Letters, 11(12):55815586, 2011.10.1021/nl2036639Google Scholar
[15]. Katsnelson, M. I.. Science, 329(5996):1157§1158, 2010.10.1126/science.1195392Google Scholar
[16]. Ziegler, D., Gava, P., Güttinger, J., Molitor, F., Wirtz, L., Lazzeri, M., Saitta, A., Stemmer, A., Mauri, F., and Stampfer, C.. Physical Review B, 83(23), 2011.10.1103/PhysRevB.83.235434Google Scholar
[17]. Yu, Y.-J., Zhao, Y., Ryu, S., Brus, L. E., Kim, K. S., and Kim, P.. Nano Letters, 9(10):34303434, 2009.10.1021/nl901572aGoogle Scholar
[18]. Stampfer, C., Molitor, F., Graf, D., Ensslin, K., Jungen, A., Hierold, C., and Wirtz, L.. Applied Physics Letters, 91(24):241907, 2007.10.1063/1.2816262Google Scholar
[19]. Wang, R., Wang, Sh., Zhang, D., Li, Z., Fang, Y., and Qiu, X.. ACS Nano, 5(1):408412, 2011.10.1021/nn102236xGoogle Scholar
[20]. Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S., and Geim, A. K.. Physical Review Letters, 97(18), 2006.Google Scholar