Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-20T06:35:26.998Z Has data issue: false hasContentIssue false

Large-Grain Polysilicon Films with Low Intragranular Defect Density by Low-Temperature Solid-Phase Crystallization

Published online by Cambridge University Press:  01 February 2011

Xiang-Zheng Bo
Affiliation:
Center for Photonics and Opti-Electronic Materials, Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, U.S.A.
Nan Yao
Affiliation:
Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544, U.S.A
J. C. Sturm
Affiliation:
Center for Photonics and Opti-Electronic Materials, Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, U.S.A.
Get access

Abstract

Solid phase crystallization (SPC) of a-Si: H at 600°C was investigated by transmission electron microscopy (TEM) and Raman spectroscopy in a cantilever structure, where the underlying SiO2 was removed prior to the crystallization. The absence of the underlying oxide leads to both a higher grain size and a lower intragranular defect density. The grain size increases from 0.6 μm in regions with the underlying oxide to 3.0 μm without the underlying oxide, and the intragranular defect density decreases one order of magnitude from ∼ 1011 cm-2 to ∼ 1010 cm-2. The improvements in material quality without the lower a-Si/SiO2 interface are thought to be due to a lower nucleation rate and a lower tensile stress with an easier silicon atomic rearrangement at the lower silicon interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Morita, T., Tsuchimoto, S., and Hashizume, N., Mater. Res. Soc. Symp. Proc. 345: 71 (1994).10.1557/PROC-345-71Google Scholar
[2] Malhi, S.D.S., Shichijo, H., Banerjee, S.K., Sundaresan, R., Elahy, M., Pollack, G.P., Richardson, W.F., Shah, A.H., Hite, L.R., Womack, R.H., Chatterjee, P.L., and Lam, H.W., IEEE Trans. Electron Devices, 32: 258 (1985).Google Scholar
[3] Ryu, M.K., Hwang, S.M., Kim, T.H., Kim, K.B., and Min, S.H., Appl. Phys. Lett. 71: 3063 (1997).10.1063/1.119437Google Scholar
[4] Petinot, F., Plais, F., Mencaraglia, D., Legagneux, P., Reita, C., Huet, O., and Pribat, D., J. Non-Crystalline Solids, 227-230: 1207 (1998).Google Scholar
[5] Morimoto, Y., Jinno, Y., Hirai, K., Ogata, H., Yamada, T., and Yoneda, K., J. Electrochem. Soc. 144: 2495 (1997).10.1149/1.1837843Google Scholar
[6] Bo, X.Z., Yao, N., Shieh, S. R., Duffy, T. S., and Sturm, J. C., J. Appl. Phys. 91: 2910 (2002).Google Scholar
[7] Haji, L., Joubert, P., Stoemenos, J., and Economou, N. A., J. Appl. Phys. 75: 3944 (1994).10.1063/1.356014Google Scholar
[8] Serikawa, T., IEEE Trans. ED 36: 1929 (1989).10.1109/16.34272Google Scholar
[9] Iverson, R.B. and Reif, R., J. Appl. Phys. 62: 1675 (1987).Google Scholar
[10] Spinella, C., and Lombardo, S., J. Appl. Phys. 84: 5383 (1998).10.1063/1.368873Google Scholar
[11] Boultadakis, S., Logothetidis, S., and Ves, S., J. Appl. Phys. 72: 3648 (1992).10.1063/1.352308Google Scholar
[12] Gonzalez-Hernandez, J., Azarbayejani, G. H., Tsu, R., and Pollak, F. H., Appl. Phys. Lett. 47: 1350 (1985).10.1063/1.96277Google Scholar
[13] Campbell, I.H., and Fauchet, P.M., Solid State. Commun. 58: 739 (1986).Google Scholar