Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T09:08:45.843Z Has data issue: false hasContentIssue false

Large-domain Organic Crystalline Films for Field-effect Transistors

Published online by Cambridge University Press:  01 February 2011

Y. Tominari
Affiliation:
[email protected], Osaka University, Toyonaka, 560-0043, Japan
M. Uno
Affiliation:
[email protected], Osaka University, Toyonaka, 560-0043, Japan
M. Yamagishi
Affiliation:
[email protected], Osaka University, Toyonaka, 560-0043, Japan
Y. Suzuki
Affiliation:
[email protected], Nagoya University, Nagoya, 464-8602, Japan
A. Wakamiya
Affiliation:
[email protected], Nagoya University, Nagoya, 464-8602, Japan
S. Yamaguchi
Affiliation:
[email protected], Nagoya University, Nagoya, 464-8602, Japan
J. Takeya
Affiliation:
[email protected], Osaka University, Graduate School of Science, 1-1, Machikaneyama, Toyonaka, 560-0043, Japan
Get access

Abstract

We report a method to fabricate thin films of large-domain organic semiconductor single crystals dispersed over the whole surface of centimeter-scale substrates for field-effect transistors. Growing less than 500-nm thick film-like organic crystals of sub-millimeter sizes densely in a furnace independently of substrates by physical vapor transport, the collection of the single crystals is mechanically attached to the surface of gate dielectric layers. The organic transistors made of large-domain benzo-annulated pentathienoacene crystals exhibited pronounced transistor performances with mobility values of ∼ 0.2-2 cm2/Vs, which is as high as devices of one-piece crystals. The result demonstrates that the above technique provides a method to apply high performance of organic single crystal transistors to real circuitry devices on large-area substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Menard, E. Podzorov, V. Hur, S.H. Gaur, A. Gershenson, M. E. and Rogers, J. A. Adv. Mater. (Weinheim, Ger.) 16, 23 (2004).Google Scholar
2. Takeya, J. Yamagishi, M. Tominari, Y. Hirahara, R. Nakazawa, Y. Nishikawa, T. Kawase, T. Shimoda, T. and Ogawa, S. Appl. Phys. Lett. 90, 102120 (2007).Google Scholar
3. Jurchescu, O. D. Popinciuc, M. Wees, B. J. van, Palstra, T. T. M. Adv. Mater. (Weinheim, Ger.) 19, 688 (2007).Google Scholar
4. Takeya, J. Goldmann, C. Haas, S. Pernstich, K. P. Ketterer, B. and Batlogg, B. J. Appl. Phys. 94, 5800 (2003).Google Scholar
5. Briseno, A. L. Mannsfeld, S. C. B. Ling, M. M. Liu, S. Tseng, R. J. Reese, C. Roberts, M. E. Yang, Y. Wudl, F. and Bao, Z. Nature 444, 913 (2006).Google Scholar
6. Takeya, J. Takenobu, T. Shimotani, H. Kobayashi, S. Iwasa, Y. and Mitani, T. Mater. Res. Soc. Symp. Proc. 871E, I7.1 (2005).Google Scholar
7. Yamada, K. Okamoto, T. Kudoh, K. yamaguchi, S. and Takeya, J. Appl. Phys. Lett. 90, 072102 (2007).Google Scholar
8. Briseno, A. L. Tseng, R. J. Ling, M.M. Falcao, E. H. L. Yang, Y. Wudl, F. and Bao, Z. Adv. Mater. (Weinheim, Ger.) 18, 2320 (2006).Google Scholar