Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T07:24:49.140Z Has data issue: false hasContentIssue false

Large thermopower in metallic misfit cobalt oxides : improvement by cationic substitutions

Published online by Cambridge University Press:  21 March 2011

S. Hébert
Affiliation:
Laboratoire CRISMAT, UMR CNRS ISMRA 6508, 6 Bd du Maréchal Juin, 14050 Caen Cedex, France
L. B. Wang
Affiliation:
Laboratoire CRISMAT, UMR CNRS ISMRA 6508, 6 Bd du Maréchal Juin, 14050 Caen Cedex, France
A. Maignan
Affiliation:
Laboratoire CRISMAT, UMR CNRS ISMRA 6508, 6 Bd du Maréchal Juin, 14050 Caen Cedex, France
D. Pelloquin
Affiliation:
Laboratoire CRISMAT, UMR CNRS ISMRA 6508, 6 Bd du Maréchal Juin, 14050 Caen Cedex, France
M. Hervieu
Affiliation:
Laboratoire CRISMAT, UMR CNRS ISMRA 6508, 6 Bd du Maréchal Juin, 14050 Caen Cedex, France
B. Raveau
Affiliation:
Laboratoire CRISMAT, UMR CNRS ISMRA 6508, 6 Bd du Maréchal Juin, 14050 Caen Cedex, France
Get access

Abstract

The thermoelectric properties of misfit cobaltites have been investigated. Their crystallographic structure consists in the stacking of layers of tilted CoO6 edge-shared octahedra, separated by rock-salt type layers. The Tl based family was first investigated : it is shown that by increasing the Tl content, the resistivity ρ can be reduced while keeping a large thermopower S. Another way to improve the figure of merit Z=S2/(ρκ) is to partially substitute Bi for Tl to increase S and keep a small ρ. A new family of Pb-based misfits has also been investigated. Two different techniques have been attempted to decrease ρ and/or increase S in this family : the partial substitution of Cu for Co, and the partial substitution of Ca for Sr.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Terasaki, I., Sasago, Y., Uchinokura, K., Phys. Rev. B 56, R12685 (1997).Google Scholar
2. Singh, D. J., Phys. Rev. B 61, 13397 (2000).Google Scholar
3. Takahata, K., Iguchi, Y., Tanaka, D., Itoh, T., Terasaki, I., Phys. Rev. B 61, 12551 (2000).Google Scholar
4. Boullay, Ph., Domengès, B., Hervieu, M., Groult, D. and Raveau, B., Chem. Mater. 8, 1482 (1996).Google Scholar
5. Boullay, Ph., Seshadri, R., Studer, F., Hervieu, M., Groult, D. and Raveau, B., Chem. Mater. 10, 92 (1998).Google Scholar
6. Hébert, S., Lambert, S., Pelloquin, D. and Maignan, A., Phys. Rev. B 64, 172101 (2001).Google Scholar
7. Masset, A.-C., Michel, C., Maignan, A., Hervieu, M., Toulemonde, O., Studer, F., Raveau, B. and Hejtmanek, J., Phys. Rev. B 62, 166 (2000).Google Scholar
8. Maignan, A., Wang, L. B., Hébert, S., Pelloquin, D. and Raveau, B., to be published in Chem. Mater.Google Scholar
9. Maignan, A., Pelloquin, D., Hébert, S., Martin, C., Hervieu, M., Michel, C., Wang, L. B., and B. Raveau, submitted to Chem. Mater.Google Scholar
10. Terasaki, I., Ishii, Y., Tanaka, D., Takahata, K., Iguchi, Y., Jpn. J. Appl. Phys. 40, L65 (2001).Google Scholar
11. Fujita, K., Mochida, T., Nakamura, K., Jpn. J. Appl. Phys. 40, 4644 (2001).Google Scholar
12. Mizokawa, T., Tjeng, L. H., Steeneken, P. G., Brookes, N. B., Tsukada, I., Yamamoto, T. and Uchinokura, K., Phys. Rev. B 64, 115104 (2001).Google Scholar