Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T03:23:22.986Z Has data issue: false hasContentIssue false

Large Scale Molecular Dynamics Study of Amorphous Carbon and Graphite on Parallel Machines

Published online by Cambridge University Press:  10 February 2011

J. Yu
Affiliation:
Concurrent Computing Laboratory for Materials Simulations Department of Physics &, Astronomy and Department of Computer Science Louisiana State University Baton Rouge, LA 70803-4001
Andrey Omeltchenko
Affiliation:
Concurrent Computing Laboratory for Materials Simulations Department of Physics &, Astronomy and Department of Computer Science Louisiana State University Baton Rouge, LA 70803-4001
Rajiv K. Kalia
Affiliation:
Concurrent Computing Laboratory for Materials Simulations Department of Physics &, Astronomy and Department of Computer Science Louisiana State University Baton Rouge, LA 70803-4001
Priya Vashishta
Affiliation:
Concurrent Computing Laboratory for Materials Simulations Department of Physics &, Astronomy and Department of Computer Science Louisiana State University Baton Rouge, LA 70803-4001
Donald W. Brenner
Affiliation:
Department of Materials Science and Engineering North Carolina State University Raleigh, NC 27695
Get access

Abstract

Using a reactive empirical bond-order potential (REBOP) model for hydrocarbons1, large scale molecular dynamics simulations of carbon systems are carried out on parallel machines. Structural and dynamical correlations of amorphous carbon at various densities are studied. The calculated structure factor agrees well with neutron scattering experiments and the results of tightbinding molecular dynamics simulations. The dynamic behavior of crack propagation through graphite sheet is also investigated with the molecular-dynamics method. Effects of external stress and initial notch shape on crack propagation in graphite are studied. It is found that graphite sheet fractures in a cleavage-like or branching manners depending on the orientations of the graphite sheet with respect to the external stress. The roughness of crack surfaces is analyzed. Two roughness exponents are observed in two different regions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 (a) Brenner, D. W., Phys. Rev. B 42, 9458 (1990); (b) D. W. Brenner and S. B. Sinnott, preprint.Google Scholar
2 Robertson, J., Adv. Phys. 35, 317 (1986); Prog. Solid State Chem. 21, 199 (1991); Phys. Rev. Lett. 68, 220 (1992).Google Scholar
3 Li, Fang and Lannin, Jeffrey S., Phys. Rev. Lett. 65, 1905 (1990).Google Scholar
4 McKenzie, D. R., Muller, D., and Paithorpe, B. A., Phys. Rev. Lett. 67, 773 (1991).Google Scholar
5 Gilkes, K. W. R., Gaskell, P. H., and Robertson, J., Phys. Rev. B 51, 12303 (1995).Google Scholar
6 larlori, S., Galli, G., and Martini, O., Phys. Rev. B 49, 7060 (1994).Google Scholar
7 Galli, G., Martin, R. M., Car, R., and Parrinello, M., Phys. Rev. Lett. 62, 555 (1989); Phys. Rev. Lett. 63, 988 (1989).Google Scholar
8 Wang, C. Z. and Ho, K. M., Phys. Rev. Lett. 71, 1184 (1993); C. Z. Wang, K. M. Ho, and C. T. Chan, Phys. Rev. Lett. 70, 611 (1993); Phys. Rev. B 47, 14835 (1993).Google Scholar
9 Kaukonen, H.-P. and Nieminen, R. M., Phys. Rev. Lett. 68, 620 (1992).Google Scholar
10 Frauenhein, Th., Blaudeck, P., Stepan, U., and Jungnickel, G., Phys. Rev. B 48, 4823 (1993).Google Scholar
11 Kelires, P. C., Phys. Rev. Lett. 68, 1854 (1992); Phys. Rev. B 47, 1829 (1993)Google Scholar
12. Li, X.-P., Nunes, R. W., and Vanderbilt, D., Phys. Rev. B 47, 10891 (1993).Google Scholar
13. Daw, M. S., Phys. Rev. B 47, 10895 (1993).Google Scholar
14. Abell, G. C., Phys. Rev. B 31, 6184 (1985).Google Scholar
15 Tersoff, J., Phys. Rev. Lett. 61, 2879(1988); Phys. Rev. B 37, 6991 (1988); Phys. Rev. B 44, 12039 (1991).Google Scholar
16. Sharon, E., Gross, S. P., and Fineberg, J., Phys. Rev. Lett. 74, 5096 (1995).Google Scholar
17. Bouchaud, E., Lapasset, G., Planes, J., and Naveos, S., Phys. Rev. B 48, 2917 (1993); Phys. Rev. Lett. 71, 2240 (1993).Google Scholar
18. Maloy, K. J., Hansen, A., Hinrichsen, E. L., Roux, S., Phys. Rev. Lett. 71, 205(1993).Google Scholar
19. Langer, J. S., Phys. Rev. Lett. 70, 3592 (1993).Google Scholar
20. Marder, M. and Liu, X., Phys. Rev. Lett. 71, 2417 (1993).Google Scholar
21. Abraham, F. F., Brodbeck, D., Rafey, R. A., and Rudge, W. E., Phys. Rev. Lett. 73, 272 (1994).Google Scholar
22. Nakano, A., Kalia, R. K., and Vashishta, P., Phys. Rev. Lett. 75, 3138 (1995).Google Scholar