Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T07:23:11.007Z Has data issue: false hasContentIssue false

Large Magnetoresistance Variation of Pseudo Spin Valves with Different Nano Oxide Layer Position

Published online by Cambridge University Press:  26 February 2011

Jeong Dae Suh
Affiliation:
[email protected], Electronics and Telecommunications Research Institute, Medical Information Convergence Team, 138 Gajeongno, Daejeon, 305-350, Korea, Republic of
C.A. Ross
Affiliation:
[email protected], Massachusetts Institute of Technology, Depart of Materials Science and Engineering, 77 Massachusetts Ave., Cambridge, MA, 02139, United States
Get access

Abstract

We have investigated the influence of the nano-oxide layer positions on giant magnetoresistance(GMR) of the NiFe(9nm)/Cu(4nm)/Co(5nm) pseudo spin valves. Nano-oxide layer positions had a several effects on the multilayer structure that changes its magnetotransport behavior. GMR ratio varied between 2.8% and 0.15% depending on the nano-oxide layer positions within the stack. The increase of the GMR ratio was accompanied by increase in resistance change, decrease in sheet resistance, and decrease in surface roughness. These significant variations of GMR ratio was explained by the changes on the spin dependent scattering or current shunting effect. Our results showed that appropriate placement of a nano-oxide layer was essential fo optimize magnetoresistance and properties of spin valves.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Prinz, G. A., Science 282, 1660 (1998).10.1126/science.282.5394.1660Google Scholar
2. Zhu, J. G., Zhang, Y, and Prinz, G. A., J. Appl. Phys. 87, 6668 (2000).10.1063/1.372805Google Scholar
3. Miller, M. M., Prinz, G. A., Cheng, S. F., and Bounnak, S, Appl. Phys. Lett. 81, 2211 (2002).10.1063/1.1507832Google Scholar
4. Egelhoff, W.F., Ha, T, Misra, R.D.K., Kadmon, Y, Nir, J., Powell, C.J., Stiles, M.D., McMichael, R.D., Lin, C.-L., sivertsen, J.M., Judy, J.H., Takano, K, Berkowitz, A.E., Anthony, T.C., Brug, J.A., J. Appl. Phys. 78, 273 (1995).10.1063/1.360692Google Scholar
5. Swagten, J. M., Strijkers, G. J., Bloemen, P. J. H., Willekens, M. M. H., and deJonge, W. J., Phys. Rev. B 53, 9108 (1996).10.1103/PhysRevB.53.9108Google Scholar
6. Kamiguchi, Y, Yuasa, H, Fukuzawa, H, Koui, K, Iwasaki, H, Sahashi, M, Digests of Intermag, paper DB01 (1999).Google Scholar
7. Egelhoff, W. F. Jr, Chen, P. J., Powell, C. J., Stiles, M. D., McMichaels, R. D., Judy, J. H., Takand, K, and Berkowitz, A. E., J. Appl. Phys. 82, 6142 (1997).10.1063/1.365620Google Scholar
8. Lai, C.H., Chen, C.J., Chin, T.S., J. Appl. Phys. 89, 6928 (2001).10.1063/1.1356717Google Scholar
9. Li, K., Wu, Y, Qiu, J, Chong, T, J. Appl. Phys. 91, 8563 (2002).10.1063/1.1447295Google Scholar
10. Hong, J, Noma, K, Kanda, E, and Kanai, H, Appl. Phys. Lett. 83, 960 (2003).10.1063/1.1597751Google Scholar
11. Hong, J, Lee, Y, Lee, M. K., Song, H. J., Shin, H. J., Yoo, Y, and Suh, J. D., Appl. Phys. Lett. 83, 4803 (2003).10.1063/1.1632024Google Scholar
12. Veloso, A, Freitas, P. P., Wei, P., Barradas, N.P., Soares, J. C., Almeida, B., and Sousa, J. B., Appl. Phys. Lett. 77, 1020 (2000).10.1063/1.1288672Google Scholar
13. Gillies, M. F. and Kuiper, A. E. T., J. Appl. Phys. 88, 5894 (2000).10.1063/1.1316051Google Scholar
14. Sakakima, H, Satomi, M, Sugita, Y, and Kawawake, Y, J. Magn. Magn. Mater. 210, L20 (2000).10.1016/S0304-8853(99)00768-4Google Scholar
15. Sant, S, Mao, M, Kools, J, Koi, K, Iwasaki, H, and Sahashi, M, J. Appl. Phys. 89, 6931 (2001).10.1063/1.1356718Google Scholar
16. Fukuzawa, H, Yuasa, H and Iwasaki, H, J. Phys. D: Appl. Phys. 40, 1213 (2007)10.1088/0022-3727/40/5/S01Google Scholar
17. Wang, L, Qiu, J. J., McMahon, W. J., Li, K. B., and Wu, Y. H., Phys. Rev. B 69, 214402 (2004).10.1103/PhysRevB.69.214402Google Scholar
18. Nam, C, Lee, K. S., Cho, B. K., J. Appl. Phys. 97, 10C510 (2005).Google Scholar
19. Shen, F, Xu, Q. Y., Yu, G. H., Lai, W. Y., Zhang, Z., Lu, Z. Q., Pan, G., Jibouri, A. A., Appl. Phys. Lett. 80, 4410 (2002).10.1063/1.1482418Google Scholar
20. Diao, Z, Huai, Y, and Chen, L, J. Appl. Phys. 91, 7104 (2002).10.1063/1.1451466Google Scholar
21. Lee, D. H., Yoon, S. Y., Kim, J. H., and Suh, S. J., Thin Solid Films 475, 251 (2005).10.1016/j.tsf.2004.07.028Google Scholar
22. Gurney, B. A., Speriosu, V. S., Nozieres, J. P., Lefakis, H, Wilhoit, D. R., and Need, O. U., Phys. Rev. Lett. 71, 4023 (1993).10.1103/PhysRevLett.71.4023Google Scholar
23. Dieney, B, Humbert, P, Sperious, V. S., Metin, S, Gurney, B. A., Baumgart, P, and Lefakis, H, Phys. Rev. B 45, 806 (1992).10.1103/PhysRevB.45.806Google Scholar
24. Gibbons, M.R., Mao, M, Chien, C, J. Appl. Phys. 89, 6949 (2001).10.1063/1.1356721Google Scholar