Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T09:41:25.341Z Has data issue: false hasContentIssue false

Large Crystallite Polysilicon Deposited Using Pulsed-Gas PECVD at Temperatures Less Than 250°C

Published online by Cambridge University Press:  15 February 2011

E. Srinivasan
Affiliation:
Dept. of Chemical Engineering, N.C. State University, Raleigh, NC 27695
S. J. Ellis
Affiliation:
Dept. of Chemical Engineering, N.C. State University, Raleigh, NC 27695
R. J. Nemanich
Affiliation:
Dept. of Physics, N.C. State University, Raleigh, NC 27695
G. N. Parsons
Affiliation:
Dept. of Chemical Engineering, N.C. State University, Raleigh, NC 27695
Get access

Abstract

A pulsed-gas intermittent deposition technique is used to deposit high crystallinity hydrogenated micro- or poly-crystalline silicon using silane and hydrogen. This method has been used to deposit crystallites that are comparable to those obtained using PECVD of fluorinated silanes. RHEED and TEM have been used to understand the nucleation process. The pulsed-gas method is promising for depositing polycrystalline silicon and subsequent use in thin film transistor applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wu, I.W., Lewis, A.G., Huang, T.Y. and Chiang, A., IEEE Electron Device Lett. 10, 123 (1989).Google Scholar
2.Lapp, J.C., Mofatt, D.M., Dumbaugh, W.H., Bocko, P.L. and Anma, M., SID 94 Technical Digest, 851 (1994).Google Scholar
3.Liu, G. and Fonash, S.J., Jpn. J. Appl. Phys. 30, L269 (1991).Google Scholar
4.Choi, D.H., Imai, S. and Matsumura, M., Jpn. J. Appl. Phys. 34, 459 (1995).Google Scholar
5.Abelson, J.R., Applied Physics A 56, 493 (1993).Google Scholar
6.Srinivasan, E. and Parsons, G.N., submitted to Journal of Applied Physics.Google Scholar
7.Sieber, I., Urban, I., Dorfel, I., Koynov, S., Schwarz, R. and Schmidt, M., Thin Solid Films 276, 314 (1996).Google Scholar
8.Matsuda, A., J. Non-Cryst. Solids 59/60, 767 (1983).Google Scholar
9.Choi, K.Y., Lee, C.Y. and Lee, C., Jpn. J. Appl. Phys. 34, 4673 (1995).Google Scholar
10.Kakinuma, H., Mohri, M. and Tsuruoka, T., J. Appl. Phys. 77, 646 (1995).Google Scholar
11.Srinivasan, E., Lloyd, D.A. and Parsons, G.N., J. Vac. Sci. Technol. A, Jan/Feb (1997).Google Scholar
12.Brogueira, P., Conde, J.P., Arekat, S. and Chu, V., J. Appl. Phys. 79, 8748 (1996).Google Scholar
13.Shirai, H., Jpn. J. Appl. Phys. 34, 450 (1995).Google Scholar
14.Torres, P., Meier, J., Fluckiger, R., Kroll, U., Anna Selvan, J.A., Keppner, H., Shah, A., Littlewood, S.D., Kelly, I.E. and Giannoules, P., Appl. Phys. Lett. 69, 1373 (1996).Google Scholar