Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T07:34:07.020Z Has data issue: false hasContentIssue false

Large Area Deposition of Amorphous and Microcrystalline Silicon by Very High Frequency Plasma

Published online by Cambridge University Press:  10 February 2011

L. Sansonnens
Affiliation:
Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fédérale de Lausanne, PPB - Ecublens, CH-1015 Lausanne, Switzerland
A. A. Howling
Affiliation:
Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fédérale de Lausanne, PPB - Ecublens, CH-1015 Lausanne, Switzerland
Ch. Hollenstein
Affiliation:
Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fédérale de Lausanne, PPB - Ecublens, CH-1015 Lausanne, Switzerland
Get access

Abstract

Two aspects of VHF plasma deposition in a large area reactor are investigated: 1) Experiments and model show that voltage inhomogeneities become serious at high frequency but can be reduced by suitable RF connection configuration. These voltage inhomogeneities are the main factor limiting the excitation frequency in order to satisfy film thickness uniformity requirements; 2) the effect of the frequency on the plasma properties has been studied between 13.56 MiHz and 70 MHz. The results show that an increase of the electron density with the frequency leads to a more efficient dissociation of silane. This increase of the gas phase reactivity of the plasma is largely responsible for the higher deposition rates observed athigh frequency.

The choice of the excitation frequency for a given application is a compromise between the gain of higher deposition rate and the frequency limit imposed by homogeneity requirements.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Curtins, H., Wyrsch, N., Favre, M. and Shah, A., Plasma Chem. Plasma Processing 7, 267 (1987).Google Scholar
[2] Finger, F., Kroll, U., Viret, V., Shah, A., Beyer, W., Tang, X.-M., Weber, J., Howling, A.A. and Hollenstein, Ch., J. Appl. Phys. 71, 5665 (1992).Google Scholar
[3] Hautala, J., Saleh, Z., Westendorp, J. F. M., Sherman, S. and Wagner, S., (Mater. Res. Soc. Proc. 420, Pittsburgh, PA 1996), p. 83.Google Scholar
[4] Heintze, M., Zedlitz, R. and Bauer, G. H., J. Phys. D: Appl. Phys. 26, 1781 (1993).Google Scholar
[5] Heintze, M. and Zedlitz, R., J. Non-Crystalline Solids 198, 1038 (1996).Google Scholar
[6] Kuske, J., Stephan, U., Steinke, O. and Rhlecke, S., (Mater. Res. Soc. Proc. 377, Pittsburgh, PA 1995), p. 27.Google Scholar
[7] Sansonnens, L., Pletzer, A., Magni, D., Howling, A.A. Hollenstein, Ch. and Schmitt, J.P.M., Plasma Sources Sci. Technol. 6, 170 (1997).Google Scholar
[8] Sansonnens, L., Howling, A.A. and Hollenstein, Ch., Plasma Sources Sci. Technol. 7, 114 (1998).Google Scholar
[9] Sansonnens, L., Franz, D., Hollenstein, Ch., Howling, A. A., Schmitt, J. P. M. Turlot, E., Emeraud, T., Kroll, U., Meyer, J. and Shah, A., (Proc. 13th EC Photovoltaic Solar Energy Conf, Bedford: H. S. Stephens and Associates, 1995) p. 319.Google Scholar
[10] Schwarzenbach, W., Howling, A. A., Fivaz, M., Brunner, S. and Hollenstein, Ch., J. Vac. Sci. Technol. A 14, 132 (1996).Google Scholar