Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T05:16:49.944Z Has data issue: false hasContentIssue false

Large Area Carbon Nanotube Films

Published online by Cambridge University Press:  01 February 2011

Gregory Konesky*
Affiliation:
[email protected], SGK Nanostructures, Inc., R & D, 3 Rolling Hill Rd., Hampton Bays, NY, 11946-3716, United States, 631-728-0585, 631-728-4164
Get access

Abstract

Carbon nanotube films can be used in a wide range of applications, from fuel cells, storage batteries, and super-capacitors, electron field emitters for displays, x-ray and beam sources, heat sinks and heat spreaders, and chemically robust filtering membranes, to name a few. Present approaches to carbon nanotube film production rely on filtration of a suspension, but creating this suspension requires the use of toxic and hazardous reagents and lengthy processing times. We describe an approach of uniaxial die pressing that incorporates a sacrificial layer to prevent binding of the carbon nanotube film to the compression surfaces. Water, or other solvents, acts as a release agent. No binder is used. The process is scalable in terms of film thickness and area. Development of an extrusion process employing these principles is described.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wu, Y., Liu, H., Huang, H., and Fan, S., Appl. Phys. Lett. 87, 213108 (2005).10.1063/1.2133916Google Scholar
2. Huang, J., Chang, C., Wong, C., U.S. Patent Application No. 20070053166 (8 March 2007).Google Scholar
3. Konesky, G., U.S. Patent Application No. 20060275956 (7 Dec. 2006).Google Scholar
4. Song, J., Sun, M., Chen, Q., Zhang, G., and Xue, Z., J. Phys. D: Appl. Phys. 37, 57 (2004).Google Scholar
5. Zhu, C., Liu, W., and Huangfu, L., J. Vac. Sci. and Tech. B, 19, 5, 16911693 (2001).10.1116/1.1389904Google Scholar
6. Liu, Z., Yang, G., Lee, Y., Bordelon, D., Appl. Phys. Lett. 89, 103111 (2006).10.1063/1.2345829Google Scholar
7. deJonge, N., Lamy, Y., Schoots, K., and Oosterkamp, T., Nature, 420, 393-395 (28 Nov. 2002).Google Scholar
8. Lafuente, E., Phys. Chem. B, 110, 5245 (2006).Google Scholar
9. Morris, R., U.S. Patent Application No. 20070190422 (16 Aug. 2007).Google Scholar
10. Bullis, K., Tech. Rev. (13 Feb. 2006) pg. 1.Google Scholar
11. Kang, I., Schulz, M., Kim, J., Shanov, V., Smart Mater. Struct. 15, 737748 (2006).10.1088/0964-1726/15/3/009Google Scholar
12. Yamamoto, G., Sato, Y., Okubo, A., and Tohji, K., J. Mater. Res. 21, 6, 15371542 (2006).10.1557/jmr.2006.0186Google Scholar
13. Matsui, J., Iko, M., Inokuma, N., Orikasa, H., Kyotani, T., and Miyashita, T. in Nanowires and Carbon Nanotubes – Science and Applications, edited by Bandaru, P., Endo, M., Kinloch, I., and Rao, A., (Mater. Res. Soc. Symp. Proc. 963E, Pittsburgh, PA, 2006), paper #: 0963-Q05-35.Google Scholar
14. Barisci, J., Wallace, G., Chattopadhyay, D., Papadimitrakopoulos, F., and Baughman, R., J. Electrochem. Soc. 150, 9, E409–E415 (Sept. 2003).10.1149/1.1593045Google Scholar
15. Stampfer, C., Helbing, T., Obergfell, D., Schoberle, B., Tripp, M., Jungen, A., and Roth, S., Nano Lett., 6 (2), 233237, (2006).10.1021/nl052171dGoogle Scholar
16. Peng, S. and Cho, K., Journal of Applied Mechanics, 69, 451453, (July 2002).10.1115/1.1469003Google Scholar
17. Lourie, O., Cox, D., and Wagner, H., Phys. Rev. Lett. 81, 16381641, (1998).10.1103/PhysRevLett.81.1638Google Scholar
18. Thomas, W., Zhou, C., Alexseyev, L., Kong, J., and Dai, H., Nature 405,769-772, (2000).Google Scholar
19. Rochfort, A., Salahub, D., and Avouris, P., Chem. Phys. Lett. 297, 4550, (1998).10.1016/S0009-2614(98)01105-1Google Scholar
20. Mazzoni, M., and Chacham, H., Appl. Phys. Lett. 76, 15611563, (2000).10.1063/1.126096Google Scholar
21. Atkins, P., Physical Chemistry, 4th ed. W. H. Freeman and Co., NY, 645650, (1990).Google Scholar
22. Hablanian, M., Vacuum Technology, Marcel Dekker, Inc., NY, 3136, (1990).Google Scholar
23. Holkeboer, D., Jones, D., Pagano, F., and Santeler, D., Vacuum Technology and Space Simulation, American Institute of Physics, NY, 237242, (1993).Google Scholar