Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T21:56:20.296Z Has data issue: false hasContentIssue false

Kohn Anomalies in Graphite and Nanotubes

Published online by Cambridge University Press:  01 February 2011

S. Piscanec
Affiliation:
Cambridge University, Engineering Department, Cambridge, CB2 1PZ, UK
M. Lazzeri
Affiliation:
Laboratoire de Mineralogie-Cristallographie de Paris, Université Pierre et Marie Curie, 75252, Paris, France
A. C. Ferrari
Affiliation:
Cambridge University, Engineering Department, Cambridge, CB2 1PZ, UK
F. Mauri
Affiliation:
Laboratoire de Mineralogie-Cristallographie de Paris, Université Pierre et Marie Curie, 75252, Paris, France
J. Robertson
Affiliation:
Cambridge University, Engineering Department, Cambridge, CB2 1PZ, UK
Get access

Abstract

Atomic vibrations are partially screened by electrons. In a metal this screening can change rapidly for vibrations associated to certain points of the Brillouin zone, entirely determined by the shape of the Fermi surface. The consequent anomalous behaviour of the phonon dispersion is called Kohn anomaly. Graphite is a semimetal. Nanotubes can be metals or semiconductors. We demonstrate that two Kohn anomalies are present in the phonon dispersion of graphite and that their slope is proportional to the square of the electron-phonon coupling. Metallic nanotubes have much stronger anomalies than graphite, due to their reduced dimensionality. Semiconducting nanotubes have no Kohn anomalies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kohn, W., Phys. Rev Lett. 2, 393 (1959)Google Scholar
2. Piscanec, S. et al, Phys. Rev. Lett. 93, 185503 (2004)Google Scholar
3. Baroni, S. et al., Rev. Mod. Phys. 73, 515, (2001)Google Scholar
4. Troullier, N. and Martins, J. L., Phys. Rev. B 43, 1993 (1991)Google Scholar
5. Methfessel, M. and Paxton, A.T., Phys. Rev. B 40, 3616 (1989)Google Scholar
6. Maultzsch, J. et al, Phys. Rev. Lett 92, 075501 (2004)Google Scholar
7. Tuinstra, F., Koening, J. L., J. Chem. Phys. 53, 1126 (1970).Google Scholar
8. Mapelli, C. et al, Phys. Rev. B 60, 12710 (1999)Google Scholar
9. Ferrari, A.C. and Robertson, J. Phys. Rev. B 61, 14095 (2000); 64, 075414 (2001).Google Scholar
10. Vidano, R.P. et al., Solid State Commun. 39 341 (1981)Google Scholar
11. Poksic, I. et al., J. Non-Cryst. Solids 227–230, 1083 (1998)Google Scholar
12. for a review see Wirtz, L. and Rubio, A., Solid State Commun. 131, 141 (2004).Google Scholar
13. Thomsen, C. and Reich, S., Phys. Rev. Lett. 85, 5214 (2000)Google Scholar
14. Piscanec, S. et al. Phys. Rev. Lett. Submitted (2004)Google Scholar
15. Dubay, O. and Kresse, G., Phys. Rev. B 67, 035401 (2003)Google Scholar
16. Jorio, A. et al. Phys. Rev. Lett. 90, 107403 (2003); Phys. Rev. B 65, 155412 (2002)Google Scholar
17. Jiang, C. et al. Phys. Rev. B 66, 161404 (2002)Google Scholar
18. Lazzeri, M. et al. cond-mat/0503278.Google Scholar
19. Baroni, S. et al. http://www.pwscf.org Google Scholar