No CrossRef data available.
Article contents
Kinetics of spinodal decomposition and strain energy effects in Cu-Ni(Fe) nanolaminates
Published online by Cambridge University Press: 07 August 2013
Abstract
The phase transformation of spinodal decomposition proceeds without nucleation and is affected by the alloy composition, temperature, interfaces and gradient energy, as well as the presence of lattice strain. As a consequence, a coherent spinodal can be depressed well below the chemical spinodal within the miscibility gap. Phase separation from a solid solution within the spinodal leads to the formation of characteristic composition wavelengths. In the nickel-based alloy system, a nanolaminate structure is used to initially create an artificial composition fluctuation with unique nanoscale wavelengths. The direct measurement of diffusivity at low temperatures in Cu-Ni and Cu-Ni(Fe), from the spinodal towards room temperature, requires sensitivity to the nanoscale fluctuations in composition. For this purpose, x-ray diffraction scans are used to assess changes in the short-range order of the composition fluctuation and the corresponding changes in the gradient energy, from which an evaluation of lattice distortion effects reveals a peak in strain energy for 2-3 nm composition wavelengths.
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2013